大数据图形
❶ 什么是大数据可视化
基本概念:
1.数据空间
数据空间是由n维属性和m个元素组成的数据集所构成的多维信息空间。
2.数据开发
数据开发是指利用一定的算法和工具对数据进行定量的推演和计算。
3.数据分析
数据分析指对多维数据进行切片、块、旋转等动作剖析数据,从而能多角度多侧面观察数据。
4.数据可视化
数据可视化是指将大型数据集中的数据以图形图像形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程。
数据可视化优点:
1.接受更快
人脑对视觉信息的处理要比书面信息容易得多。使用图表来总结复杂的数据,可以确保对关系的理解要比那些混乱的报告或电子表格更快。节省接受时间。
2.增强互动
数据可视化的主要好处是它及时带来了风险变化。与静态图表不同,可视化的应用可以是流动性的操作,更有力的了解数据信息。
3.强化关联
数据可视化的应用可以使数据之间的各种联系方式紧密关联。以数据图表的形式描绘各组数据之间的联系。
4.美化数据
可视化从视觉的角度来描绘数据,可根据技术工具对数据的表现形式进行美化,以达到观看数据的同时对于视觉也是一种享受的效果。
关于什么是大数据可视化,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
❷ 怎么样的大数据可视化效果图才算好看,直观
对于大数据可视化效果图的问题,我理解的题主的问题分两方面:
1、好看
2、直观
那么关于大数据可视化效果图的这个问题,我们就可以分两部分来说了。
一、好看
其实好看很容易达到,一方面需要合理安排dashboard(仪表盘)中的布局,另一方面需要好看的设计和配色。
比如我们之前一位同事做过的她个人的健身数据分析。通过一张仪表盘,就全面展示出了她近期的健身状况。
那么这其中的整体配色就和背景一致,图形选用的颜色也在一个色系,整体看起来就很舒服。
那从这张图中,我们其实可以看到4点:
1、合同数量增长了
2、合同数量一直在波动
3、8月份合同数量达到最高点
4、合同数量在8个月里两次下跌
你想强调的是哪一点?看的人其实并不清楚,你需要选择其中一点你想表述的主题,作为该图表的标题。
所以说,我会认为直观中的“直”指的是信息表达要直接,“观”是你选择的图表要适合你要表达的信息(关于这部分可以看下关于图表选择的一篇内容),也就是说并不是你把图表做出来就结束了,而是你要通过标题、颜色等方式,去强调你想表达的观点。
在我看来,直观可能比好看要更重要一些。
❸ 大数据的数据可视化是什么样的
DCV作为新一代数据中心可视化管理平台,让管理人员可以清晰直观地掌握IT运营中的有效信息,实现透明化与可视化管理,进而有效提升资产管理与监控管理的效率,实现立体式、可视化的新一代数据中心运行管理网页链接
CampusBuilder (模模搭)提供了一个完整的、 网络化、 可视化的三维虚拟环境设计编辑平台,操作简便,高效易用,用户可使用鼠标拖动的方式绘制各种结构及添加各种对象模型,即可立即创建数据中心机房的三维模型,还可以导入机房CAD图纸辅助绘制,用户可快速高效地设计数据中心机房,实现房间结构生成、装饰调整、设备摆放和场景创建的工作,生成实际可用的数据中心三维虚拟仿真场景。
1、环境可视化
沙盘、展板、图纸等传统管理手段缺乏交互性,吸引力弱,信息传递效果不佳。Tarsier的环境可视化管理采用3D虚拟仿真技术,实现数据中心的园区、楼宇、机房等环境的可视化浏览,清晰完整地展现整个数据中心。同时配合监控可视化模块,可以与安防、消防、楼宇自控等系统集成,为以上系统提供可视化管理手段,实现数据中心园区环境的跨系统集中管理,提高对数据中心园区的掌控能力和管理效率。
功能特性:
地理园区的虚拟仿真、建筑外观的虚拟仿真、建筑内部结构的虚拟仿真。
2、
管线可视化
通过传统的平面图纸和跳线表方式难以看清密集管线的信息。Tarsier的管线可视化管理以3D可视化手段梳理数据中心日益密集的电气管道与网络线路,让数据中心运维人员从平面图纸及跳线表格中解脱出来,更加直观地掌握数据中心的管线分布及走线情况,从而快速排查及修复管线类故障,提高管线管理水平和故障解决效率。
功能特性:
园区管网3D可视化、建筑电气管路3D可视化、建筑空调管路3D可视化、机房设备布线3D可视化。
3、资产可视化
数据中心内设备资产数量庞大,种类众多,传统的列表式管理方式效率低、实用性差。Tarsier的资产可视化管理模块采用创新的三维互动技术实 现对数据中心资产配置信息的可视化管理,可与各类IT资产配置管理数据库集成,也支持各种资产台账表格直接导入,让呆板的资产和配置数据变得鲜 活易用,大大提升了资产数据的实用性和易用性。
功能特性:
分级浏览可视化、设备上下架3D可视化、全设备虚拟仿真、快速模糊查询、强大模型库支持。
4、容量可视化
传统管理软件对机房容量情况缺乏有效的信息检索手段,查询困难。Tarsier的容量可视化管理模块提供以机柜为单位的数据中心容量管理,以树形结构和3D可视化展现两种方式全面表现机房和机柜整体使用情况,对于空间容量、电力容量、承重容量等进行精确统计和展现,帮助运维人员高效的管理机房的容量资源,让机房各类资源的负荷更加均衡,提升数据中心资源使用效率。
功能特性:
地理园区的虚拟仿真、建筑外观的虚拟仿真、建筑内部结构的虚拟仿真。
5、监控可视化
监控可视化管理整合数据中心内各种专业监控工具(如动环监控、安防监控、网络监控、主机监控、应用监控等),把多种监控数据融为一体,建立统一监控窗口,解决监控数据孤岛问题,实现监控工具、监控数据的价值最大化。同时,基于T3D图形引擎强大的可视化能力,提供丰富的可视化手段,扭转由于二维信息维度不足而导致的数据与报表泛滥状况,切实提升监控管理水平。
功能特性:
门禁监控集成、视频监控集成、消防监控集成、环境监控集成、配电监控集成、制冷监控集成、设备统一告警展示。
6、演示可视化
PPT介绍、动画录像等传统汇报方式枯燥单调、真实感不强。Tarsier的演示可视化管理借助T3D图形引擎提供的虚拟线路和可视化展示等强大功能,满足数据中心基础设施多样化的展示需求,如逻辑关系表达、模拟气流、PPT整合、自动巡检及演示路线定制等,用户可以在平台中制作内容丰富、生动多彩、图文并茂的数据中心介绍和演示内容,以耳目一新的形式展现数据中心的方方面面,有力提升数据中心整体形象,充分体现数据中心管理水平。
功能特性:
PPT演示汇报管理、日常工作视角管理、动画线路管理。
❹ 大数据怎么能实现可视化
分为以下五步:
第一步:分析原始数据
数据是可视化背后的主角,逆向可视化与从零构建可视化的第一步一样:从原始数据入手。不同的是在逆向时我们看到的是数据经过图形映射、加工、修饰后的最终结果,而原始数据隐藏在纷繁复杂的视觉效果中。抛开华丽的可视化效果,从中找到数据、分析数据是我们的首要工作。
第二步:分析图形
图形是可视化中的关键元素,也是我们最关注的部分。分析可视化中的图形可以从很多角度来进行,我们可以先从整体入手
第三步:深入挖掘背后技术
通过上面的分析我们其实已经可以通过一些工具制作出类似可视化效果。但是作为可视化硬核玩家的你不能止步于此,应该深入地了解更底层的实现方法。我们可以查看开源工具的源代码,
第四步:实施
进行到这里,难道你不想亲自实现一下可视化效果吗?有了数据、分析了结构、深入理解了背后的原理,具体实施将会变得十分简单,可以根据需求选择适合自己的工具。
第五步:可读性优化
在上面的分析中我们可能漏掉了一些细节:针对可读性进行优化。可读性会直接影响可视化内容的质量,混乱的颜色、重叠的标签都会大大降低可读性。在逆向可视化案例时,我们应该注意发现和积累对可读性优化的方法,以更好地应用到自己的案例中去。
希望对你有帮助!
❺ 大数据可视化工具都有什么
大数据可视化分析抄工具,既然是大数据,那必须得有处理海量数据的能力和图形展现和交互的能力。能快速的收集、筛选、分析、归纳、展现决策者所需要的信息,并根据新增的数据进行实时更新。
这方面的工具一般是企业级的应用,像国外的Tableau、Qlik、Microsoft、SAS、IBM都有支持数据分析和分析结果展示的产品,个中优劣你可以分别去了解下。国内阵营的话,有侧重于可视化展示的也有侧重于数据分析的,两者兼有的以商业智能产品比如FineBI为代表。
❻ 大数据可视化有哪些优点
1、动作更快
由于人脑对视觉信息的处理要比书面信息简单得多。生活中咱们都能发现,有时候文字表达记不住,换成图形表达就会记得很快。所以说,数据可视化是一种十分清晰的交流方法,使事务领导者能够更快地理解和处理那些杂乱的数据。
大数据可视化东西能够提供实时信息,使利益相关者更简单对整个企业进行评估。对商场改变更快的调整和对新机会的快速识别是每个职业的竞赛优势。
2、以设性方法提供成果
规范化的文档经常被静态表格和各种图表类型所夸张,由于它制造的太过于具体了。而领导恰恰不需要知道这些泰国具体的内容。
而使用大数据可视化的东西陈述就能够让咱们能够用一些简短的图形就能表现那些杂乱信息,甚至单个图形也能做到。决议计划者能够通过可视化东西,轻松地解说各种不同的数据源和进行各种决议计划。
3、能够理解运营和成果之间的连接
数据可视化允许用户去盯梢运营和整体事务性能之间的连接,在竞赛环境中,找到事务功用和商场性能之间的相关性是至关重要的。
关于大数据可视化有哪些优点,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
❼ 大数据图形化软件有哪些
先了解一个概念,大数据。大数据指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯
❽ 如何使用大数据对图像进行处理
1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如 果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。
数据处理: 自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析: 假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、 卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、 因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘: 分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。
大数据的处理
1. 大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
❾ 大数据可视化展现方式有哪些
一、面积&尺寸可视化
对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度版或面积加以区别,来清晰的表达权不同目标对应的目标值之间的比照。
这种办法会让阅读者对数据及其之间的比照一目了然。制作这类数据可视化图形时,要用数学公式核算,来表达准确的标准和份额。
二、颜色可视化
经过颜色的深浅来表达目标值的强弱和巨细,是数据可视化规划的常用办法,用户一眼看上去便可全体的看出哪一部分目标的数据值更突出。
三、图形可视化
在咱们规划目标及数据时,使用有对应实际含义的图形来结合呈现,会使数据图表愈加生动的被展示,更便于用户了解图表要表达的主题。
四、地域空间可视化
当目标数据要表达的主题跟地域有关联时,咱们一般会挑选用地图为大布景。
这样用户能够直观的了解全体的数据情况,同时也能够依据地理位置快速的定位到某一区域来查看详细数据。
五、概念可视化
经过将笼统的目标数据转换成咱们熟悉的简单感知的数据时,用户便更简单了解图形要表达的意义。
❿ 计算机专业的学生选大数据还是图形图像处理哪个利于就业
数字图像处理的学科基础是统计学,高等数学,随机数学以及计算机图像学偏重颜色及视感方面的内容。许多数字图像的处理算法已经相当成熟,而且实现它们的难度并不算大,关键是找到对应的编程语言合适的像素操作函数即可。
其实一般来说,只要涉及到成像或者图像的基本都要图像处理方面的人。比方说一个成像设备,在输出图像之前需要对原始图像进行增强或者去噪处理,存储时需要对图像进行压缩,成像之后需要对图像内容进行自动分析,这些内容都是图像处理的范畴。
在知识结构的设计上,大数据应用技术涉及到数学、统计学、编程语言、大数据平台、操作系统、数据分析工具等内容,另外也会涉及到物联网、云计算等相关方面的内容。数学和统计学是大数据技术的重要基础,即使从事落地应用也要重点掌握一些常见的算法。
编程语言的学习通常会集中在Java、Python、Scala、R等编程语言上,从目前就业的角度出发,Java是不错的选择。如果未来想从事大数据应用开发岗位,那么需要重点学习一下编程语言部分。