大数据挖掘案例
A. 大数据挖掘方法有哪些
方法1.Analytic Visualizations(可视化分析)
无论是日志数据分析专家还是普通用户,数据可视化都是数据分析工具的最基本要求。可视化可以直观地显示数据,让数据自己说话,让听众看到结果。
方法2.Data Mining Algorithms(数据挖掘算法)
如果说可视化用于人们观看,那么数据挖掘就是给机器看的。集群、分割、孤立点分析和其他算法使我们能够深入挖掘数据并挖掘价值。这些算法不仅要处理大量数据,还必须尽量缩减处理大数据的速度。
方法3.Predictive Analytic Capabilities(预测分析能力)
数据挖掘使分析师可以更好地理解数据,而预测分析则使分析师可以根据可视化分析和数据挖掘的结果做出一些预测性判断。
方法4.semantic engine(语义引擎)
由于非结构化数据的多样性给数据分析带来了新挑战,因此需要一系列工具来解析,提取和分析数据。需要将语义引擎设计成从“文档”中智能地提取信息。
方法5.Data Quality and Master Data Management(数据质量和主数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化流程和工具处理数据可确保获得预定义的高质量分析结果。
关于大数据挖掘方法有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
B. 有哪些大数据分析案例
大数据的特征就是体量庞大,数据量超级多,因此在允许的条件下,是对大体量的数据进行挖掘,提炼出有价值的东西。广东韵为大数据分析。
C. 求一些"数据仓库和数据挖掘"的案例
去数据挖掘相关论坛 诸如www.dmresearch.net之类上去找吧
D. 国内的数据挖掘,大数据的案例有哪些
从去年6月接触大数据以来,我阅览了大量关于“大数据”的文章,每天大概是80篇这样一个量级。其中60%实在反复强调大数据概念,30%在借大数据的风炒作自己,剩下10%,有谈技术的,有谈硬件存储的,有谈解决方案,真要问有哪些是接地气并且实实在在大数据解决问题的案例,那是少之又少。
BAT在谈大数据,风投资本在谈大数据,银行/金融/保险在谈大数据,IBM、微软、EMC在谈大数据,专家教授在谈大数据,可是大数据真的让我们的生活变得更美好了吗?作为屌丝青年的我们真正感受到大数据的红利了吗?不管你信不信,我没有感受到。也就是说,大数据落地到普通人身的长征,还没走完。
我们日常生活中使用电脑、平板、手机的数据,被软硬件服务器采集加以使用,而我们却没有因为贡献大数据而让生活更智能,这不符合逻辑。
E. 国内的数据挖掘,大数据应用的案例有哪些
1. 亚马逊的“信息公司”:果全球哪家公司从大数据发掘出了最大价值,截至目回前,答案可能非答亚马逊莫属。亚马逊也要处理海量数据,这些交易数据的直接价值更大。
作为一家“信息公司”,亚马逊不仅从每个用户的购买行为中获得信息,还将每个用户在其网站上的所有行为都记录下来
2. 谷歌的意图:果说有一家科技公司准确定义了“大数据”概念的话,那一定是谷歌。根据搜索研究公司comScore的数据,仅2012年3月一个月的时间,谷歌处理的搜索词条数量就高达122亿条。谷歌的体量和规模,使它拥有比其他大多数企业更多的应用大数据的途径。
3.塔吉特的“数据关联挖掘”:用先进的统计方法,商家可以通过用户的购买历史记录分析来建立模型,预测未来的购买行为,进而设计促销活动和个性服务避免用户流失到其他竞争对手那边。
F. 大数据挖掘常用的方法有哪些
1. Analytic Visualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2. Data Mining Algorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3. Predictive Analytic Capabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4. Semantic Engines(语义引擎)
由于非结构化数据的多样性带来了数据分析的新的挑战,需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5. Data Quality and Master Data Management(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。