统计学与人工智能
Ⅰ 人工智能,机器学习,统计学,数据挖掘之间有什么区别
说到人工智能,就不能不提到机器学习和深度学习。很多时候,我们得先明确人工智能与机器学习和深度学习的关系,我们才能更好地去分析和理解人工智能与数据分析、统计学和数据挖掘思维关联。人工智能与统计学、数据分析和数据挖掘的联系,更多的是机器学习与深度学习,同数据分析与数据挖掘的关联。
0.人工智能
人工智能英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学研究领域的一个重要分支,又是众多学科的一个交叉学科,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括语音识别、图像识别、机器人、自然语言处理、智能搜索和专家系统等等,人工智能可以对人的意识、思维的信息过程的模拟。人工智能包括众多的分支领域,比如大家熟悉的机器学习、自然语言理解和模式识别等。
1.机器学习
机器学习属于人工智能研究与应用的一个分支领域。机器学习的研究更加偏向理论性,其目的更偏向于是研究一种为了让计算机不断从数据中学习知识,而使机器学习得到的结果不断接近目标函数的理论。
机器学习,引用卡内基梅隆大学机器学习研究领域的着名教授Tom Mitchell的经典定义:
如果一个程序在使用既有的经验E(Experience)来执行某类任务T(Task)的过程中被认为是“具备学习能力的”,那么它一定要展现出:利用现有的经验E,不断改善其完成既定任务T的性能(Performance)的特质。
机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。在我们当下的生活中,语音输入识别、手写输入识别等技术,识别率相比之前若干年的技术识别率提升非常巨大,达到了将近97%以上,大家可以在各自的手机上体验这些功能,这些技术来自于机器学习技术的应用。
那机器学习与数据挖掘的联系是什么呢?
机器学习为数据挖掘提供了理论方法,而数据挖掘技术是机器学习技术的一个实际应用。逐步开发和应用了若干新的分析方法逐步演变而来形成的;这两个领域彼此之间交叉渗透,彼此都会利用对方发展起来的技术方法来实现业务目标,数据挖掘的概念更广,机器学习只是数据挖掘领域中的一个新兴分支与细分领域,只不过基于大数据技术让其逐渐成为了当下显学和主流。
2.数据挖掘
数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘本质上像是机器学习和人工智能的基础,它的主要目的是从各种各样的数据来源中,提取出超集的信息,然后将这些信息合并让你发现你从来没有想到过的模式和内在关系。这就意味着,数据挖掘不是一种用来证明假说的方法,而是用来构建各种各样的假说的方法。数据挖掘不能告诉你这些问题的答案,他只能告诉你,A和B可能存在相关关系,但是它无法告诉你A和B存在什么相关关系。机器学习是从假设空间H中寻找假设函数g近似目标函数f。数据挖掘是从大量的数据中寻找数据相互之间的特性。
数据挖掘是基于数据库系统的数据发现过程,立足与数据分析技术之上,提供给为高端和高级的规律趋势发现以及预测功能;同时数据量将变得更为庞大,依赖于模式识别等计算机前沿的技术;其还有另外一个名称为商业智能(BI, Business Intelligence),依托于超大型数据库以及数据仓库、数据集市等数据库技术来完成。
主要挖掘方法有: 分类 、 估计、预测、相关性分组或关联规则、 聚类、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)等技术。
3.深度学习
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。晦涩难懂的概念,略微有些难以理解,但是在其高冷的背后,却有深远的应用场景和未来。
那深度学习和机器学习是什么关系呢?
深度学习是实现机器学习的一种方式或一条路径。其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。比如其按特定的物理距离连接;而深度学习使用独立的层、连接,还有数据传播方向,比如最近大火的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能,让机器认知过程逐层进行,逐步抽象,从而大幅度提升识别的准确性和效率。
神经网络是机器学习的一个分支,而深度学习又是神经网络的一个大分支,深度学习的基本结构是深度神经网络。
4.数据分析
数据分析的概念:基于数据库系统和应用程序,可以直观的查看统计分析系统中的数据,从而可以很快得到我们想要的结果;这个就是最基本的数据分析功能,也是我们在信息化时代了,除了重构业务流程、提升行业效率和降低成本之外的了。另外数据分析更多的是指从历史数据里面发现有价值的信息,从而提高决策的科学性。数据分析更侧重于通过分析数据的历史分布然后从中得出一些有价值的信息。还有一个数据分析更重要的功能,就是数据可视化。
比如说,在财务系统的信息化中,基于企业的财务系统,我们可以直观获取企业现金流量表、资产负债表和利润表,这些都来自与我们的数据分析技术。数据分析目前常用的软件是Excel, R, Python等工具。
在对比数据分析和数据挖掘时,数据分析则更像是对历史数据的一个统计分析过程,比如我们可以对历史数据进行分析后得到一个粗糙的结论,但当我们想要深入探索为什么会出现这个结论时,就需要进行数据挖掘,探索引起这个结论的种种因素,然后建立起结论和因素之间模型,当有因素有新的值出现时,我们就可以利用这个模型去预测可能产生的结论。
因此数据分析更像是数据挖掘的一个中间过程。
5.总结
人工智能与机器学习、深度学习的关系
严格意义上说,人工智能和机器学习没有直接关系,只不过是机器学习的方法被大量的应用于解决人工智能的问题而已。目前机器学习是人工智能的一种实现方式,也是最重要的实现方式。
深度学习是机器学习比较火的一个方向,其本身是神经网络算法的衍生,在图像、语音等富媒体的分类和识别上取得了非常好的效果。
数据挖掘与机器学习的关系
数据挖掘主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。
机器学习是数据挖掘的一种重要方法,但机器学习是另一门学科,并不从属于数据挖掘,二者相辅相成。
深度学习、机器学习的发展带了许多实际的商业应用,让虚幻的AI逐步落地,进而影响人类社会发展;
深度学习、机器学习以及未来的AI技术,将让无人驾驶汽车、更好的预防性治疗技术、更发达智能的疾病治疗诊断系统、更好的人类生活娱乐辅助推荐系统等,逐步融入人类社会的方方面面。
AI即使是现在,也是未来,不再是一种科幻影像和概念,业界变成了人类社会当下的一种存在,不管人类是否喜欢或者理解,他们都将革命性地改变创造AI的我们人类自身。
Ⅱ 一文读懂机器学习,数据科学,人工智能,深度学习和统计学之间的区别
统计学是当今世上最大的认识论和方法论,所有的科学前沿问题都要通过统计学来加以描述,统计学是近四百年来西方科技文明的台柱子。
Ⅲ 人工智能机器学习统计学数据挖掘之间有什么区别
还是有区别的。前者很多场景的应用是依靠神经网络、分类器等算法进行分类和回归,但用到专的却是属依靠不断迭代试错的前提下进行参数的测算。而统计学对分类、回归的测算,则是依靠最小二乘、最大似然估计等特定的方法进行参数测算。
2者由于算法不同,因此可解释性则存在很大也是最本质的差异。
前者的参数计算结果不可解释,因为是不断试错试出来的。就好比衣服上有个洞要补,拿各种各样形状的补丁去试着比划,直到比划到能覆盖这个洞为止。但这种补丁不唯一,因为可能存在2种以上的补丁都能覆盖这个洞。
后者做补丁则是根据洞的形状,按照一个规则计算出一个唯一的补丁,例如补丁溢出洞口面积最小化,洞口补充全面化,计算出一个也是唯一一个补丁。
Ⅳ 关于计算机人工智能和统计学的经典教学书籍.
人工智能哲学
作者:(英)玛格丽特?A?博登
出版:上海人民 出版日期:2006年08月
人工智能哲学是伴随现代信息理论和计算机技术发展起来的一个哲学分支。本书收集了人工智能研究领域著名学者的15篇代表性论文,这些论文为计算机科学的发展和人工智能哲学的建立做出了开创性的贡献。这些论文总结了人工智能发展的历程,近年来该学科发展的趋势,以及人工智能中的重要课题。在这些划时代的著作中,包括有:现代计算机理论之父A?M?图灵的“计算机与智能”;美国著名哲学家J?R?塞尔的“心灵、大脑与程序”;G?E?欣顿等人的“分布式表述”,以及本书编者、英国著名人工智能学者M?A?博登的“
http://www.xinhuabookstore.com/proct/391873/
Ⅳ 诺奖得主为何说人工智能其实就是统计学
2018年8月14日报道,日前,2011年诺贝尔经济学奖获得者Thomas J. Sargent在世界科技创新论坛上表示,人工智能其实就是统计学,只不过用了一个很华丽的辞藻,其实就是统计学。好多的公式都非常老,但是所有的人工智能利用的都是统计学来解决问题。
我怎么讲到这儿来了呢?人工智能首先是一些很华丽的辞藻。人工智能其实就是统计学,只不过用了一个很华丽的辞藻,其实就是统计学。好多的公式都非常老,但是我们说所有的人工智能利用的都是统计学来解决问题。有一些新发展,过去二三十年,今天我们统计学的完成质量更高,首先电脑运算速度更快,有新的算法,好多是源于物理学发展,还有统计力学等等,这是过去3到4年从物理学拿来,加速了我们做系列统计学方面的进步。过去写下来公式,但是没有办法求解,过去你放计算机,但是能力太差,做不了。后来有了AlphaGo,就是一个动态编程,太大了。两三年前的解决之道就是特别大、特别快的计算机,利用一块一块的算法去运算。我觉得亚当斯密百分之百正确,多少年前说应该有专业分工,这是正确的。
今天有很多工具,如果统计学家一点也不懂物理学,很多人类科技进步就不能变成现实。所以我想作为企业家大家也应该做通才,我们应该去考虑来自不同技术的融合或者是相互促进,这就是为什么有了阿尔法GO的成功。
还有一两点,是刚才听了前面发言人的一些感受。到底什么是金融?金融的含义是什么?问一个高中生什么是金融,他觉得是太华丽的一个辞藻。什么是金融?金融就是有人存钱有人不存钱,有人花的多挣的少,有人想投资,人是不一样的。什么是储蓄?什么是金融?有一些人就是来做中介,存钱的和需要花钱的人做中介,这个业务就是金融。
这个业务包含以下几方面。首先很容易受到欺诈侵害。第二很容易受到不信任的伤害。如果我攒了钱,把钱交给别人帮我打理,我交给的人是我信任的人,他没有不还钱的动机。他为什么还钱给我。金融体系要验证,我把钱借给你之后会不会还我,这就是金融的关键。如何让别人相信你?金融该是信任和验证相关的活动。在这些方面是有技术发展的,就是验证和信任的工具。
是谁作为主体,是国家做还是谁做?你以自己的生活为例,你和你的家人为例,家人之间也有很多的信任和验证。比如,阿里巴巴或者亚马逊是“国中国”,因为他们的工作是创造交易平台,人们可以参与买方卖方在他们的交易平台上活动,无论是阿里巴巴还是亚马逊都是发挥警察作用,既管理买方也管理卖方,相当于电子警察,他们开发技术,改良交易平台的信任和验证。像20到25年前你们的工作。就是前沿的工作,当时就在讲这样的问题的理论,这个理论的技术不断进步。
Ⅵ 本科统计学研究生读金融或者人工智能算跨专业吗
本科读统计学,研究生读金融专业不算跨专业,但是研究生读人工智能就算跨专业了。
Ⅶ 统计和机器学习的区别
一般来说,被人问到这个问题的时候,我会从它们的主要目的来入手:
机器学习是用来对数据做进行尽量准确的预测的;
而统计则是用来研究变量之间的关系的
所以,两者不能相互替代
我们往往是先从统计分析开始,再到统计模型,最后用到机器学习做预测
Ⅷ 人工智能,深度学习和统计学之间的区别
统计建模或者机器建模的目的都是从数据中挖掘到感兴趣的信息,但是统计学和机器学习的专出发属点不同,统计学家关注模型的可解释性,而机器学习专家关注模型的预测能力。在一些传统领域,工程实验,生物试验,社会调查,物理实验,统计学应用比较早
Ⅸ 人工智能与大数据专业怎么样
是很不错复的专业,制未来的走向
大数据是众多学科与统计学交叉产生的一门新兴学科。大数据牵扯的数据挖掘、云计算一类的,所以是数学一类的专业。
(1)统计学是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。
(2)数学与应用数学是一个学科专业,该专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练。能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。
(3)信息与计算科学专业是以信息领域为背景用将迈向的数学与信息,管理相结合的交叉学科更深入和专业。
Ⅹ 人工智能,机器学习,统计学和数据挖掘有什么区别
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 统计模型(statistical model)有些过程无法用理论分析方法导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计法求得各变量之间的函数关系,称为统计模型。常用的数理统计分析有有最大事后概率估算法,最大似然率辨识法最大事后概率估算法,最大似然率辨识法等。