大数据在电子商务中的应用
A. 大数据对电子商务的作用是什么意思
本公司是做网络数据采集的,所以在这里主要谈谈采集到的电商数据有什么作用。
电商可利用那些数据提升自身优势
图像 :图像通常是指产品图像。
视频:产品页面的视频
竞争者的数据:例如重点关注哪些产品系列,要库存的品牌等等。
股票市场数据:展现电子商务公司的总体表现,该指标可以是用来决定是增加产量,开设更多商店还是保持稳定。
产品数据(文本):以文本格式显示的产品详细信息,描述了产品的用途,使用方法以及将其与其他产品区分开的功能是什么。
产品数据(表格):与产品相关的属性数据,例如重量,功率,功率,尺寸等通常以表格格式显示,尽管抓取起来可能比普通文本格式的产品数据难得多,但重要性更高。
社交媒体数据:人们正在谈论的趋势标签或产品和品牌。这可以帮助公司决定与哪些品牌相关联,哪些产品可以做更多的广告宣传,以及可以放置什么广告来更好地与更大的人群联系。
电子商务领域的新闻数据:舆情数据收集,了解行业动态、预防负面舆情
我们采集的电商公开数据
商品信息数据
指各大电商平台商品详情页面可见文本信息(其中商品的具体评价不算在商品信息中)
总的来说,电商大数据可以帮助找到最合适得投放渠道和目标用户;可以了解消费者的兴趣、爱好、需求;打破数据壁垒和隔阂;帮助决策过程数据化等等。
B. 大数据在跨境电商领域有什么应用
在互联网﹑物联网﹑移动技术等新型应用与电子商务相结合的同时,产生﹑积累了大量的﹑形式多样的用户网络行为数据资源,被称为电子商务大数据,并呈现出前所未有的"数据爆炸"状态。这种状态促使电子商务行业重新审视数据的重要性,并形成对数据的新型管理理念,即提炼大数据中的有效数据,与具体电子商务业务结合运用,深入挖掘数据资源的价值,进行精准化﹑个性化﹑智能化的客户服务创新,以达到既降低成本,又提高效益的双效效应。无论是国内电商还是跨境电商,大数据的作用不容忽视。
1)提升竞争优势价值:现代电子商务数据的来源已经不局限于企业的Web站点,企业会更多的利用电子邮件﹑微博﹑Web日志﹑互动社区等社交媒介多元化的收集相关数据,这些数据将从不同方面反映着企业自身业务的状况﹑客户的状态﹑竞争对手的动向﹑社会环境的优劣,企业的决策行为是基于对数据的分析而做出的。因此,这方面的数据信息越全面,越趋于社会化,越具有实时性,以此制定出的企业发展与竞争策略就越准确﹑越有针对性﹑越贴近客户,当然企业在市场上的竞争优势的可持续性就随之增强了。
2)挖掘数据驱动运营价值:大数据庞大的数据量为电子商务企业做好了锁定并把握消费者的基础保证,电商企业通过不断的整合数据资源,使得所属供应链上下游参与方能更方便的共享信息与资源,并模糊业务节点的界限,从而优化电子商务全程业务流程,提高各业务节点的流畅度,进而提高的业务效率。同时,大数据模式下电子商务交易带来的互动数据,不仅为电商企业,也为网络交易平台提供了全方位的市场信息,为以电子商务交易为核心的新兴产业链打造了活性数据平台。
3)重塑多重商机价值:对于电子商务企业来说"低成本﹑高效率"是其取胜市场的法宝,而致胜的战术就是基于对大数据的分析和优化。通过收集消费者带来的海量数据,进一步挖掘用户需求,便于企业准确预测潜在客户市场,提高交易的成功率。另一个方面,在大数据状态推动下,消费者获取﹑滤选﹑分析数据信息的能力也在不断的提高,对数据信息准确识别能力的增强有利于消费者将注意力反应在其网络行为中,继而利于电商企业智能业务和服务的开发与推广,为企业节约成本﹑占领市场带来巨大的多重商机。
4)改善物流服务质量价值:电子商务与物流业的合作随着云计算﹑物联网和数据应用等技术的突破越来越密切,电商企业与物流企业因一笔交易带来了共同的服务对象,对于客户数据的分析也就不仅局限于电商企业单向操作。大数据改变了物流业的服务方向和服务内容,物流企业通过对客户数据的分析能够更合理的选择派送方式,优选路径,提供差异化服务,提高物流服务的质量,提升电商物流业的品牌形象。
5)创造消费者感知价值:消费者作为互联网技术应用的主力军,最大限度的抢占了大数据中的消费数据,这些数据在企业进行数据信息分析时转化为极有价值的商业数据。大数据环境下互联网消费体系创造了全开放的数据系统,网络消费者在网络应用上投入的资金更多的是要获得个人满足感的体验与感受,网络消费对象得以拓展的同时,智能化﹑人性化﹑差异化﹑互动性的网络服务争先呈现在消费者面前,让消费者最大限度的感受消费的归属感﹑满足感和幸福感,实现商家与消费者双赢的深度价值创造。
C. 谁知道大数据在未来电子商务中起到什么作用了解的说一下
艾普凯尔CEO张鲁闽先生在2013年10月26日厦门电子商务发展高峰论坛上,宣讲了一篇“大数据时代下电子商务的机遇与挑战”,受到参会人员高度的关注。
D. 大数据在电子商务中的应用前景怎样
大数据由巨型数据集组成,这些数据集大小常超出人类在可接受时间下的收集、应用和处理能力。它需要新型的处理方式去促成更强的决策能力、洞察力与最佳化处理。
电子商务大数据伴随着消费者和企业的行为实时产生,广泛分布在电子商务平台、社交媒体、企业内部系统和其它第三方服务平台上。
整合来自不同渠道的数据形成了xiaofeizhe的全面信息,为及时、全面、精准地了解消费者需求奠定了基础。云计算、复杂分析系统的出现提供了快速、精细化分析消费者偏好及其行为轨迹的工具。大数据等新一代信息技术的发展使得消费者的地位日益重要,推动电子商务的价值创造方式发生转变。
传统电子商务创新主要局限在电子商务的效率、便利化等方面,大数据技术的广泛应用给电子商务的模式创新带来机遇。基于大数据的电子商务创新主要在于提炼大数据的价值并将其应用于电子商务的各个流程,形成新的商业模式。
E. 大数据在电商行业的应用是怎样的如何利用大数据做竞品分析
如图说明大数据在抄电商的应用已经很全面了,现在随着市场流量成本变高,流量获取困难,很多品牌方已经认识到利用数据指导业务,管理业务的重要性。
而利用大数据做竞品调研主要市场销量销额的份额、热销SKU、品牌方的定价、促销政策、投放渠道等几个维度,可以了解用户的需求发现市场潜在机会,对比品牌间在市场的竞争力,跟自己的业务情况结合分析做出营销策略。
大数据分析关键点是对海量数据的挖掘,清理、处理,要么自己组建数据分析团队,需要一个全面的技术过硬的团队搭建还是不容易的,要么是第三方合作,购买数据报告,市场数据分析全面但是成本太高了,或者用第三方数据分析Saas软件。提供数据源可视化的观测分析、像是慢慢买、奥维云网、魔镜都是做大数据分析系统的,只是每个深耕不同行业、数据源获取的方式不一样。
F. 大数据处理对电子商务的影响有哪些
电子商务:通俗来说就是企业通过网络,把线下的业务移到线上去开展,完成商品或者服务的销售交易。
大数据:指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
近几年来,互联网产业高速发展,很多传统企业通过电子商务,开展网络营销,线上产生交易的数据量是线下无法比的,因而就产生了处理巨量资料,也就是大数据的急迫需求,解决不好,就成为电子商务发展的瓶颈。反之,大数据处理的成功发展,也促进了企业加速开展电子商务,为互联网产业的发展注入新动力。
一、大数据处理模式
在电子商务领域内,信息的大批量处理如果是以PB、EB、ZB为计量单位,则这些信息就构成了大数据。以往的计算机处理模式已经很难对这些大数据进行高效率的处理,势必会影响电子商务的总体发展。因此对大数据时代的计算机处理模式进行革新是获得电商行业整体突破的基本保证。传统的数据处理模式是数据库集群模式,大数据处理模式的基本要求是建构云计算Map Rece处理体系,使信息的分解处理和结果合并成为可能。
(一)数据库集群模式
集群模式的基本运行原理是将同一种应用程序通过不同的工作方法相互协调共同完成,在面对客户端的数据请求时,为其提供单一映像,并将这些映像通过一定的连接技术和方法与硬件系统进行连接,整体上建构一个松散耦合的集合。简单来说,数据库集群模式实现了数据库技术和集群技术的结合。数据库集群模式的运行较为平稳,具有多方面的技术优势,例如强大的靠扩展性、整体的可靠性等等。
但是在面对大数据处理时,数据库集群也表现出了一定的缺陷。这些缺陷主要包含以下方面:第一是可扩展性补不强。如果系统功能节点的硬件基础设施选择的是Pc服务器,那么将会出现系统线缆繁杂、硬件高度复杂化和架设安装难度大等问题,对其扩展性造成了一定的限制;第二是数据通信受限。目前运行高速互联网的必备条件是将 PCI插槽与主机进行连接。但是PCI的数据传送能力有限,不能满足节点间的数据通信要求;第三是提升空间小。这种空间主要是指数据库数据集的可扩展空间,在进行数据处理时如何解决系统的安全性、运算速度和可扩展性是数据库集群模式要面对的重要问题。此外,数据库集群模式还存在兼容性、可靠性、容错性、对异质条件支持能力等方面的局限性。
(二)Map Rece框架
云计算构架主要是由低端服务器进行大规模集群构成的数据处理技术,在数据存储容量和数据处理能力上具有绝对的优势。由于云计算平台在运行中的可靠性和可扩展性等功能,目前众多的大型企业或单位都将其作为web搜索和大数据分析的主要平台,如中国移动、淘宝、网易、网络等等。Map Rece框架主要包含三个方面的内容,即并行编程模型Map Rece、分布式文件系统(HDFs)、并行执行引擎。
Map Rece的设计是由google完成的,主要是进行大数据集的计算处理工作,代表了分析技术的整体发展状态。Map Rece在进行数据处理时,先将对象进行抽象化处理,使其以映射和化简操作对的形式呈现出来,其中映射部分进行数据的过滤,化简部分进行数据的聚集工作,在工作中均以良好的界面进行管理工作。对Map Rece计算过程进行分解,可以将其工作原理理解为将大数据集进行解构,解构之后的结果是形成了数量众多的小数据集,通过集群节点对这些小数据集进行分别处理,由此得出中间结果,将这些结果通过节点进行合并,就可以得出对整个大数据集的处理结果。
二、大数据时代电子商务IT技术设施的革新
IT基础设施是保证电子商务系统运行的前提,对其进行技术革新能够使其快速适应电子商务大数据时代。在后互联网技术时代,电子商务企业广泛采用的IT基础设施一般是PC服务器。随着数据信息处理规模的扩大和处理能力的要求不断增强,电子商务企业对于IT基础设施的革新正朝着小型化和集群化方向发展,与此同时,电商企业还需要不断地投入大量的人力和技术实现IT基础设施的维护、升级和更新。
(一)数据仓库的发展
从近期对电子商务信息处理数据的研究可以发现,在系统运行中出现的大数据仍在以惊人的速度发展和增长,其特点也表现为明显的分布式发展和异构性趋势。传统的数据库如具备一般数据处理功能和信息分析技术的数据库以及BI技术已经很大程度上不能满足PB级的数据量处理要求。这种大规模数据的发展促使电子商务数据仓库系统出现了非常明显的变革,也即是数据量数量级不断上调,目前已经实现了由TB向PB的迈进,并且仍呈现出爆炸性的增长态势。
根据对现今电商数据量发展状况及趋势的研究,可以发现电子商务数据仓库将会呈现以下特点:第一,未来两年电商数据仓库的最大数据量将会达到甚至超过 1OOPB,并且其增长速度也将呈现出前所未有的变化,远远超过摩尔定律;第二,对数据的分析方式实现质的变化,将从常规化分析向深度化分析转变;第三,中低端硬件组成的大规模集群硬件平台将会代替高端服务器构成的基础设施硬件支持平台,基础设施进一步向集群化发展;由于硬件系统的革新将会对并行数据库产生了重要影响,使其规模不断扩大,由此带来的成本也将逐渐增长。总体来讲,目前电子商务将会出现大规模革新的直接因素是数据量的大规模增长和深度分析的现实要求。
(二)云计算构架
云计算构架是一种针对分布式网络计算而设计的新型数据处理模式,在应用中已经表现出了良好的适应性。在网络环境中进行计算、存储、软件等在线服务时较传统构架有显著的性能提升。在目前应用于电子商务领域内的云计算构架来讲,其具备了以下特征:按需自助服务(on Demand self-service)、可度量服务(measured service)、池化资源(resource pooling)、泛化网络访问((broad network access)以及快速弹性(rapid elasticity)。
三、大数据处理对电子商务的影响
云计算的发展历史并不长,首次引入云计算技术的是淘宝网,其所有交易都是基于自建系统完成的,而阿里云也成为我国首家开展云计算供应的公司。云计算对于大数据的超强处理能力使其对电子商务的发展起到了推波助澜的作用,主要影响表现在以下方面。
(一)信息检索能力
电子商务平台虽然很大程度上改变了消费者的购物方式,但是就营销方式来说,商品数量和种类依然是影响消费者选择商家的主要因素。在电子商务领域内,商品数量和种类呈现出结构的繁杂化发展甚至是非结构化发展趋势。这些都为 IT基础设施以及信息处理技术提出了挑战,大数据处理技术由于其具备的灵活性和功能强大的检索服务使其能够引领电子商务信息处理技术的新方向。
云计算的检索服务可以根据客户的实际需求和交易习惯对大量的信息进行筛选和显示,其智能性和高效性也是传统IT基础设施多不能比拟的。此外,云平台还具有信息推荐功能,根据网上交易整体情况筛选热点商品予以展示,提高了交易的针对性和检索效率。云计算性能的优势还体现在对人类部分思维进行描述的功能上,解决了长期以来计算机信息处理不能够准确把握人类语言和知识应用的难题,使数据的处理实现了功能的深度发掘。这种技术优势表现在实际交易中就是电商平台能够对用户输入的语言进行迅速的反映,并能准确地提供用户所需耍的商品信息。这种处理过程极大地提高了信息服务的效率和质量,使用户满意度得到了很大的提升。
(二)弹性处理能力
电子商务信息处理系统的工作性质使其必须具有强大的弹性处理能力,并能够在极短的时间内做出反映以应对在系统运行中出现的各种问题。这些问题的出现并不是偶然的,而是随着用户的并发访问以及商家集体营销活动造成的大量订单信息所导致的,这些情况在当前的电商系统运行中是比较常见的,这就需要系统在面临突然增长的业务量时具有强大的扩容能力和数据的存储能力。
云计算技术的出现在理论上实现了信息的无上限存储能力以及超大规模信息处理能力,使其能够轻松地应对TB数量级的信息乃至PB数量级的信息处理。而这一功能的实施并不需要企业对硬件系统进行更换,而且能够以比较低的成本享用云计算存储处理信息服务,在此基础上对应用系统机型全方位的布局并保证了弹性处理能力的实现,使资源达到了最优化配置。
(三)信息处理安全性能
网络系统面临的最大难题是信息安全问题,保证交易安全和用户信息安全更是电商企业应时刻关注的话题。信息时代的一大特征是将信息转化为可利用的资源,甚至是直接创造经济价值的信息资本。电子商务领域内,大数据就是企业生存发展的重要资本,对于大数据的掌控能力将成为衡量企业核心竞争力的主要标志。但是大数据的出现同样给信息资源的安全带来了极大的挑战,由于其结构复杂,数量巨多,并且大多是具有敏感性的信息,很容易成为网络攻击的目标。
大数据处理技术在应对信息安全是进行了性能的全面评估,使其能够及时、精确地定位各类网络攻击或非正常现象,并将这些异常数据收集整理通过分析实施预防措施。云计算技术的安全性还体现在将安全可靠的信息转化为云服务,并将这些信息托管在云端,为用户的信息提供了专业化的信息防护措施和保密方案。
四、大数据处理的发展趋势
信息技术的发展历史并不长远,但是在每个发展阶段都会出现具有标志性的技术类型和产品。在目前,信息技术的热点以及将会对信息产业产生重大影响的无疑是云计算技术和大数据处理f司题。在电子商务环境中大数据处理将会发展出更多强大和多元的功能,具体发展趋势有以下几点。
(一)大数据处理服务和产品的多样化
目前电子商务平台的服务和产品正在向着多元化的方向发展,除了电商企业之外,政府机构、大型集团企业、行政事业单位等都加入或正在加入构建云环境下的数据处理服务平台,并且可以实现对没有充足IT能力的小型电子商务企业进行服务和产品的输出。
(二)新型的电子商务运营模式
云计算的出现不仅对IT技术设施进行了大规模和深度的革新,同时其带来的众多产品如长尾效应、经济效应、众包、个性化服务等对于经济学概念的再认知也产生了重大的影响。这些变革有助于盈利性企业的经营模式做出重大的调整,进而加快了向服务经济社会发展的步伐。随着信息技术的进一步发展和现有技术的逐步完善,传统经济模式必将会受到严重的冲击,商业模式也会随之产生整体性的变动甚至是根本性的改变,并且在变化中不断进行新技术、新方法和新思路的探索。
(三)IT设施将成为企业核心竞争力的重要组成部分
企业的核心竞争力包含多方面的内容,但可以确定的是都是对企业发展具有重大影响的因素。随着现代信息化时代的发展和信息技术在各个领域内的广泛使用,企业成产、管理、经营等模块的信息化将会对企业能否适应社会的发展以及在日益激烈的市场中保持其竞争力产生举足轻重的作用。通过对IT基础设施进行引进和革新,能在最大限度内实现资源的最佳配置,提高生产质量和效率,降低企业运营成本,提升企业的整体管理水平。特别是对于信息技术依赖程度高的电子商务企业,云计算构架和大数据处理技术的可扩展性相当可观,为海量信息的存储、整合和管理提供了安全可靠的环境,通过IT基础设施的技术优势,为突破电子商务行业的发展上限提供了可能。
G. 大数据在电子商务中应用体现在哪些方面
1、通过大数据进行市场营销
通过大数据进行市场营销能够有效的节约企业或是电子商务平台的营销成本,还能够通过大数据来实现营销的精准化,达成精准营销。
通过分析大数据对消费者的消费偏好进行分析,在消费者输入关键词之后,提供与消费者消费偏好匹配程度较高的产品,节约了消费者的寻找商品的时间成本,使交易双方实现快速的对接。实现电子商务平台或是企业营销的高效化。在数据化时代,针对消费者进行针对性的营销能够实现精准营销,提升产品的下单率,提升电子商务 的营销效率。
2、实现导购服务的个性化
对于电子商务的平台来讲,往往都会针对用户提供一些推荐和导购服务。通过大数据的分析和挖掘能够实现导购服务的个性化。针对消费者的年龄、性别、职业、购买历史、购买商品种类、查询历史等信息,对消费者的消费意向、消费习惯、消费特点进行系统性的分析,根据大数据的分析针对消费者个人制定个性化的推荐和导购服务。
大数据的运用能够抵消电子商务虚拟性所带来的影响,提升竞争力,挖掘更多的潜在消费者。针对消费者的消费偏好,进行适宜的广告推广,提升产品的广告转化率,同时提供个性化的导购服务。
对于一些大型的电子商务平台来讲,产品种类繁多,想要提升消费者的消费量,提升消费者的下单率就要通过分析消费者的消费偏好,主动进行商品的推送。这种通过大数据进行分析的方式不仅仅能提升产品的浏览量,还能针对消费者的消费需求提供商品的推送,提升消费者的用户体验,进而提升消费者的忠诚度。
3、为商家提供数据服务
大数据的分析不仅仅能够帮助电子商务平台提升下单率和销售额,还能将大数据的分析作为产品和服务向中小型的电子商务商家进行销售。这样不仅仅能够提升平台的收益,还能帮助商家了解消费者的消费偏好、消费者对于该类 产品的喜好等信息,来帮助商家及时针对大部分消费者的消费偏好以及市场的动态,针对产品的性能等进行研发和调整。
(7)大数据在电子商务中的应用扩展阅读:
大数据的应用:
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
4、麻省理工学院利用手机定位数据和交通数据建立城市规划。
5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。