电信大数据运营体系流程
您好,通过开展流量大会的基础上,中国电信综合平台诠释了构建流量新生态的规划,介绍了流量经营生态化的产品体系构架,并且随着移动互联网应用普及的全面深入,倡导流量经营开放共生、合作共赢,还向合作伙伴开放流量资源,提供推广渠道。
客服54为你解答。
⑵ 大数据平台的运营模式有哪些
这里面涉及到3个方面的专业常识问题。
第一个是大数据;
第二个是平台,以及大数据平台;
第三个是运营,以及运营模式。
我们先来看第一个问题,大数据。“大数据”的定义很多,也很泛。但是都没有错,因为出发点不一样。有的站在研究的角度,有的站在学术的角度,有的站在市场的角度,那么比较客观的定义,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。它的特点,首先是它的价值取向,没有可以利用的、可以挖掘的数据再大也不叫大数据;另外看它的海量和精准性,海量数据不等于大数据;还有就是在线性,再多的数据,如果没有在线性的特点,那只能算局域网里面的陈冗信息。
第二个问题,平台,就是在线化的生态体系,才可以叫平台。如果没有在线,如果紧紧是孤立存在的,是不能称为大数据平台的。既然叫平台,而且是大数据平台,其在线化以及基于整个数据的抓取、挖掘和再利用等方面应该有一个整体规划,这样的情况下才可以叫平台运营。
第三个问题,对于运营的理解,无论有多少种介绍和解释,运营都分为宏观和围观的两种理解。宏观的,叫综合运营,是战略和战术整体结合的层面;微观的,叫产品运营,然后再细分为内容运营、用户运营、活动运营等;
所以,要像搞清楚运营模式,需要前面先定准以上内容。
如果宏观上的运营模式,主要是看整体商业模式的定位。包括如何推广、如何获取数据、如何挖潜数据;如何让平台赢利,并最终实现平台的价值;
微观的运营模式,主要是三步走的策略,具体就是拉新、留客、激活、反复再拉新、激活、留客等,不断地增加粘度、增加客户的使用感受,增加平台的娱乐性、增强客户的2次使用和再分享推广传播的策略。
⑶ 运营商如何运用大数据转型升级
据研究显示,大数据在全球的收入快速增长,预期在2012-2017年的复合增长率将达到60%。根据最近一段时间发布的各类大数据投资研究报告进行了初步估算,预期未来超过40%的GDP增量。大数据已经成为与自然资源同等重要的宝贵财富,发展潜力空间巨大。
而电信运营商作为数据的生产者,多年来积累的数据蕴藏着丰富的业务信息和商业信息,价值挖掘的潜力巨大,拥有如此优质的数据基础,使得运营商在企业、行业、社会等多个层面,都会大有作为。
在8月19日召开的中国国际大数据大会上,中国移动副总裁李正茂表示,中国移动已经意识到,大数据将与运营商的通信网络和客户资源具有同等重要的地位。
从企业层面来看,大数据将助力运营商全面提升运营商的精细化运营水平。一是改善用户体验,通过对用户感知的分析,并运用智能交互技术,进一步提升用户体验;二是实现科学决策,通过大数据刻画当前企业发展的状况,预测未来趋势,对企业成本、收入风险等进行精细化管控。
从行业层面来看,目前各行业纷纷加快大数据应用,重构未来的核心竞争力,运营商可利用数据与网络资源优势,聚焦行政管理、医疗、交通、教育等多个行业,在行政管理领域可以辅助提升政策制定、信息发布、事务办理、管理监控等多个领域的效率和设备,在医疗领域患者可通过可穿戴设备向医生发布数据,从而得到更为便捷的医疗服务。医药研发机构可以利用收集到的医学大数据提高研发能力和医疗水平。在交通、物流领域,可实现智能化的运输网络与运力规划,实施交通管理、车队管理等等。
从社会层面来看,运营商依靠多年的数据和平台经验积累,一定会成为提供社会化大数据生态平台服务的有力参与者。在未来,社会化大数据生态平台,将以数据银行的形式存在,平台使用者不但可以享用运营商的各类数据分析服务,使用者数据也可以在这里得到充分共享和流通,不同的商业模式将在这个平台上衍生和繁荣。
李正茂认为,大数据对于运营商转型升级具有重大的战略意义。而中国移动在大数据的具体研发、产业合作与对外应用方面,也进行了一些积极探索和实践。在自主研发方面,中国移动在2007年启动了大云的研发计划,构建了海量存储处理和数据分析和挖掘等核心能力。到目前为止,大云的大数据相关产品已经在17个省市进行了超过100项应用试点和商用,部署规模超过了3000台服务器,在快速响应市场需求的同时也降低了企业运营成本。
李正茂还透露,中国移动在今年成立了苏州研发中心,计划构建3000-4000人的研发团队和运营团队,宗旨就是要进一步完善云计算和大数据产品体系,尽快形成国际一流的云计算和大数据服务能力。
在产业合作方面,中国移动一直秉承开放共赢理念,推动云计算和大数据技术的成熟和产业健康发展。我们构建了大云产业联盟,与技术提供商、集成商、高等院校、政府机构等超过50家单位,在核心模块合作、授权技术服务、应用开发技术攻关等产业不同层面开展了合作。我们还积极参与了国内、国际标准化和开源组织工作,在TMF完成了大数据报告并完成发布,牵头完成了弹性应用计算接口等国家标准的制定。
另外,在大数据对内的研究探索方面,中国移动率先提出了大数据超细分微营销精服务的理念,在客户服务、市场营销等方面,也有不少成功案例。现阶段的工作,更多集中在应对数据规模增长和促进企业不同专业领域数据融合上面,以及不同程度的发挥数据价值。
⑷ 移动 联通 电信 大数据合作,怎么操作
可以去找当地运营商的政企/集团客户事业部客户经理(有专门负责大数据业务的客户经理,属于创新业务),与公司签订合同,运营商可以根据你的需求定期提取后台数据。
⑸ 大数据时代,电信运营商如何“点石成金”
大数据风起云涌。对于大数据中蕴含的商业价值,有人形象地将其称为“数据钻出石油”。充分利用大数据技术,从海量堆积的交互数据中发现带有趋势性、前瞻性的信息,能够孕育出惊人的社会价值和商业价值。 然而,即便放眼全球,我们看到的大数据应用案例还鲜有电信运营商的身影,与互联网领域的诸多探索相比,他们略显平淡,大规模钻出“石油”就更谈不上了。面对这种情况,相信很多业内人士都在思考这些问题:大数据究竟会给电信运营商带来哪些新机遇?大数据时代下的电信运营商面临什么样的挑战?电信运营商今后将如何运筹帷幄、构建面向智慧运营的大数据体系? 从4W到4V: 运营商拥有先天优势 根据信息爆炸时代的特征,业界将大数据总结为“4V”体量(Volume)、多样(Variety)、速度(Velocity)和价值(Value)。体量意味着海量的数据,多样是指数据类型繁多,速度主要指数据被创建和移动的速度快,而价值是处理数据的目标、从各种形式呈现的复杂数据中挖掘有用的东西。 电信运营商作为信息服务的基础服务商,其提供的服务用一个简单的词来概括就是“4W”Who、When、Where、What,在使用服务时,哪些用户、需要联系谁、什么时间、处于什么位置、做些什么,这些信息无疑都需要经过运营商的管道。 对比“4V”和“4W”,我们可以发现两者之间的契合之处,通信用户数以亿计的基数保证了数据的海量和多样性,通信网络的实时承载保证了数据的速度,更重要的是,运营商还可以搜集到用户位置、大体收入等有价值的数据,进而为精准营销提供参考。因此,运营商在掌握用户行为数据方面具有先天优势,这是一般互联网厂商所望尘莫及的。随着智能手机和高速网络的普及,运营商能够获得的用户行为数据还将更为丰富。 数据科学家、《大数据时代》的作者维克托·迈尔·舍恩伯格表示,在大数据时代,拥有数据的公司无疑将取得巨大的成功。因为他们具有洞察力,大数据会提供他们全新的洞察力。从这个角度看,运营商无疑坐拥一座天然的宝藏,但是能否挖掘、提炼出这些矿藏中的价值将决定运营商能否把握住大数据带来的机遇。 由大入微: 构建智慧的大数据体系 由微入大易,由大入微难。对电信运营商来说,将无数具体而微的信息汇集起来其实并不难,真正的难点在于如何点石成金,如何“驾驭”这纷繁复杂的数据,如何存储、整合、分析、汲取出真正有价值的内容,并创造性地使用它。 大流量并不一定带来大数据,电信运营商获得的数据中大部分都是“桀骜不驯”的它们被称为非结构数据,这种数据本身并没有太多价值。目前,电信运营商在大数据方面的探索还仅仅处于起步阶段:一方面,用户的行为、轨迹、状态等数据散在网络各个环节中,形成信息资产的成本非常高;另一方面,运营商大数据挖掘手段还很不充足,如何从庞大的数据中分析出有价值的信息并找到合理的商业模式,提高“驾驭”数据的能力,成为电信运营商面临的挑战。 那么电信运营商该如何去构建面向智慧运营的大数据体系? 对电信运营商来说,可以利用大数据实现自身的精确化营销和精细化运营,在这方面,国内已经有运营商作出了尝试。使用Hadoop等大数据处理工具,通过分析用户的兴趣图谱、关系图谱、行为定向,再结合自身的业务推出量身定制的服务,如针对出差较多的商务人士,向他们推荐漫游套餐;对爱好移动上网的用户,向他们提供流量包……这本身就属于大数据应用的范畴,而且,运营商通过对业务资源和财务等数据的综合分析,可以让决策层进行快速的市场决策,从而抢占市场制高点。 未来,运营商还可以拓展第三方模式,加大开放合作力度,与产业链各个环节开展合作,加快对大数据经营商业模式的探索,不断释放其管道中庞大数据的潜在力量,将数据转化成“真金白银”。在这方面,国外电信运营商的探索给我们提供了思路。西班牙电信去年成立了名为“动态洞察”的大数据业务部门,它可以为客户提供数据分析打包服务,帮助客户把握重大变化趋势。法国电信的移动业务部门也开始尝试挖掘大数据的潜在价值,比如,它承建了一个法国高速公路数据监测项目,对每天产生的几百万条记录进行分析,从而提高了道路通畅率。更具颠覆性的是Verizon,其数据业务的盈利收入在其整个业务中占比非常高,其中就有联合第三方机构对其用户群进行大数据分析,再将有价值的信息提供给政府或企业获取的额外价值。 分析人士指出,数据化程度越高的行业,其大数据的应用场景越多,能够带来的价值也就越高。数据重构商业,虽然国内在这方面的探索还未形成规模,但对运营商来说却代表着前进的方向凭借自身优势,将数据分析包装为服务,提供给政府、商场、银行等第三方机构进行决策,从而实现商业模式的创新,并在与互联网企业的竞争中占得先机。不过,需要明确的是,这里的数据包装并不是非法采集用户个人信息,更不是贩卖用户个性化隐私,真正的大数据应该是用加工实现增值,用分析来指导决策,而非原始数据信息本身的低层次滥用。
⑹ 电信如何构建智慧运营大数据体系
乐活引语:大数据风起云涌。对于大数据中蕴含的商业价值,有人形象地将其称为“数据钻出石油”。充分利用大数据技术,从海量堆积的交互数据中发现带有趋势性、前瞻性的信息,能够孕育出惊人的社会价值和商业价值。 然而,即便放眼全球,我们看到的大数据应用案例还鲜有电信运营商的身影,与互联网领域的诸多探索相比,他们略显平淡,大规模钻出“石油”就更谈不上了。面对这种情况,相信很多业内人士都在思考这些问题:大数据究竟会给电信运营商带来哪些新机遇?大数据时代下的电信运营商面临什么样的挑战?电信运营商今后将如何运筹帷幄、构建面向智慧运营的大数据体系?从4W到4V:运营商拥有先天优势 根据信息爆炸时代的特征,业界将大数据总结为“4V”——体量(Volume)、多样(Variety)、速度(Velocity)和价值(Value)。体量意味着海量的数据,多样是指数据类型繁多,速度主要指数据被创建和移动的速度快,而价值是处理数据的目标、从各种形式呈现的复杂数据中挖掘有用的东西。 对比“4V”和“4W”,我们可以发现两者之间的契合之处,通信用户数以亿计的基数保证了数据的海量和多样性,通信网络的实时承载保证了数据的速度,更重要的是,运营商还可以搜集到用户位置、大体收入等有价值的数据,进而为精准营销提供参考。因此,运营商在掌握用户行为数据方面具有先天优势,这是一般互联网厂商所望尘莫及的。随着智能手机和高速网络的普及,运营商能够获得的用户行为数据还将更为丰富。 数据科学家、《大数据时代》的作者维克托·迈尔·舍恩伯格表示,在大数据时代,拥有数据的公司无疑将取得巨大的成功。因为他们具有洞察力,大数据会提供他们全新的洞察力。从这个角度看,运营商无疑坐拥一座天然的宝藏,但是能否挖掘、提炼出这些矿藏中的价值将决定运营商能否把握住大数据带来的机遇。由大入微:构建智慧的大数据体系 大流量并不一定带来大数据,电信运营商获得的数据中大部分都是“桀骜不驯”的——它们被称为非结构数据,这种数据本身并没有太多价值。目前,电信运营商在大数据方面的探索还仅仅处于起步阶段:一方面,用户的行为、轨迹、状态等数据散在网络各个环节中,形成信息资产的成本非常高;另一方面,运营商大数据挖掘手段还很不充足,如何从庞大的数据中分析出有价值的信息并找到合理的商业模式,提高“驾驭”数据的能力,成为电信运营商面临的挑战。 对电信运营商来说,可以利用大数据实现自身的精确化营销和精细化运营,在这方面,国内已经有运营商作出了尝试。使用Hadoop等大数据处理工具,通过分析用户的兴趣图谱、关系图谱、行为定向,再结合自身的业务推出量身定制的服务,如针对出差较多的商务人士,向他们推荐漫游套餐;对爱好移动上网的用户,向他们提供流量包……这本身就属于大数据应用的范畴,而且,运营商通过对业务资源和财务等数据的综合分析,可以让决策层进行快速的市场决策,从而抢占市场制高点。 未来,运营商还可以拓展第三方模式,加大开放合作力度,与产业链各个环节开展合作,加快对大数据经营商业模式的探索,不断释放其管道中庞大数据的潜在力量,将数据转化成“真金白银”。在这方面,国外电信运营商的探索给我们提供了思路。西班牙电信去年成立了名为“动态洞察”的大数据业务部门,它可以为客户提供数据分析打包服务,帮助客户把握重大变化趋势。法国电信的移动业务部门也开始尝试挖掘大数据的潜在价值,比如,它承建了一个法国高速公路数据监测项目,对每天产生的几百万条记录进行分析,从而提高了道路通畅率。更具颠覆性的是Verizon,其数据业务的盈利收入在其整个业务中占比非常高,其中就有联合第三方机构对其用户群进行大数据分析,再将有价值的信息提供给政府或企业获取的额外价值。 分析人士指出,数据化程度越高的行业,其大数据的应用场景越多,能够带来的价值也就越高。数据重构商业,虽然国内在这方面的探索还未形成规模,但对运营商来说却代表着前进的方向——凭借自身优势,将数据分析包装为服务,提供给政府、商场、银行等第三方机构进行决策,从而实现商业模式的创新,并在与互联网企业的竞争中占得先机。不过,需要明确的是,这里的数据包装并不是非法采集用户个人信息,更不是贩卖用户个性化隐私,真正的大数据应该是用加工实现增值,用分析来指导决策,而非原始数据信息本身的低层次滥用。
⑺ 大数据产品运营需要掌握哪些知识
数据运营是指数据的所有者通过对于数据的分析挖掘,把隐藏在海量数据中的信息作为商品,以合规化的形式发布出去,供数据的消费者使用。
数据运营
数据充斥在运营的各个环节,所以成功的运营一定是基于数据的。在运营的各个环节,都需要以数据为基础。当我们养成以数据为导向的习惯之后,做运营就有了依据,不再是凭经验盲目运作,而是有的放矢。
当我们有了足够的数据之后,我们可以不再依赖主观判断,而让数据成为公司里的裁判。理想情况下,如果我们能够追踪一切数据,那么我们所有的决策都可以理所当然地基于数据。
在企业中,我们从整体战略到目标设定,到驱动商务运营的方法,最后采用一定的度量来衡量数据运营的效果。
数据在企业中的作用是巨大的。不同层面的人,需要对数据做不同的操作。
⑻ 大数据运营模式
不是的,就是用数据整合方式。做销售。http://www.nchtech.com/chengzhong/ 这点赞一下哦。谢谢。
⑼ 电信行业如何应用大数据
大数据运用的四个类型
运营商运用大数据主要有四个类型。首先,在市场层面,运营商可以利用大数据对自身的产品进行服务,通过大数据分析用户行为,改进产品设计,并通过用户偏好分析,及时、准确进行业务推荐,强化客户关怀,这样就可以不断改善用户体验,增加用户的信息消费以及对运营商的粘稠度;其次,在网络层面,可以通过大数据分析网络的流量、流向变化趋势,及时调整资源配置,同时还可以分析网络日志,进行全网络优化,不断提升网络质量和网络利用率;第三,在企业经营层面,可以通过业务、资源、财务等各类数据的综合分析,快速准确地确定公司经营管理和市场竞争策略;第四,在业务创新层面,可以在确保用户隐私不被侵犯的前提下,对数据进行深度加工,对外提供信息服务,为企业创造新的价值。这样,大数据将助力运营商实现从网络服务提供商,向信息服务提供商的转变。
由于大数据产业具有强烈互联网特征,现有的运营模式很难帮助运营商实现大数据产业的迅速发展,这是因为,对于大数据产业,运营商传统的金字塔式的组织结构已经过时,传统架构的信息系统及组织架构已无法应对海量数据和创新型应用,那种由上而下的运营模式无法更接近用户的需求,显然已经阻碍运营商自身大数据产业的纵深发展。根据市场需求,运营商必须全面转向以客户和消费者为中心的运营体系,重新梳理企业的经营模式和组织架构,这就是模式的创新,大数据产业发展要求运营商实现管理经营和市场信息系统完美对接,新型大数据应用必将助力运营商向信息服务模式转型。
面向大数据时代,运营商的及时转型成为必然,否则将有被互联网企业超越的可能性。理论上讲,运营商拥有颇具优势的大数据资源并不是完全不可替代,例如,用户的位置信息就可以通过多种APP应用获得,用户的网络使用信息也可以通过多家互联网企业合作获取,互联网企业通过泛互联网化收集更多的大数据信息。另一方面,多行业的垂直整合将成为趋势,在数据应用层面,行业企业通过多种手段搜集大量的用户数据,将更贴近用户,更理解用户,为其提供更适当的服务,大数据将成为资产更具有战略意义,各个行业及单位都在关注大数据。
根据大数据数量大、时效性要求高、数据种类及来源多样化等特征,运营商首先获取更多有用的大数据资源,例如,很多的网络运行信息,包含大量有价值的用户行为和位置信息,这样的信息可以加以利用。有了资源应该加以利用,避免大数据资源的浪费。事实上,一些运营商拥有大数据这样的金山,却似乎无奈坐看并逐渐沦为管道,在不断强化传统市场的效益考核,却好像在忽视大数据价值的流失。
直面数据分析挑战
当然,海量数据的出现、数据结构的改变,也给运营商的大数据管理及分析带来了挑战,一是由于多种业务的发展、市场需求的变化和网络规模的扩大使得运营商大数据迅速的增加,这增加了运营商大数据存储和处理的难度,使得现有数据仓库无法线性扩容,这表明传统的数据仓库无法有效存储日益增长的业务数据;二是由于新型大数据服务不同于传统通信业务分析特点,需要对内容等非结构化、大容量信息进行多用户、多应用、实时有效的分析,传统的架构和数据仓库处理已不能满足新的信息服务需求。因此,运营商需要建立新型大数据中心,来存储、分析和处理海量数据,必要的投入是必不可少的。
大数据产业出现和发展是现代信息技术与互联网时代海量信息的发展到一定阶段的必然结果,大数据应用将是海量数据、现代信息技术与各种社会应用的一次化学反应,必将对当今社会的信息技术、商业模式和相关的法律法规产生深刻的变革。
⑽ 大数据系统体系建设规划包括哪些内容
(1)内部控制组织
组织是体系运行的基本保障。其中,是否设置专职的内控部门回是企业界关注的焦点答,通常的设置方式包括三种:
方式一:单独设置内控部门。
方式二:由内部审计部门牵头负责内控工作。
方式三:在内部控制建设集中期设立内部控制建设办公室,该办公室从各主要部门抽调人员专职从事内控体系建设工作,待体系正式运行时,办公室解散,人员归位到各经营管理部门,且牵头职能也归位至内审部门。
(2)内部环境的诊断与完善
(3)动态的风险评估
(4)控制活动的设计
内控手册分模块设计,每一模块一般包括五个方面的内容:
第一,管理目标。
第二,管理机构及职责。
第三,授权审批矩阵。
第四,控制活动要求。
第五,比照上述几部分,各经营管理部门应当重新梳理与完善业务流程,针对关键风险点强化控制措施,确保组织职责、授权审批、内控要求落实到经营流程中,保证管理目标的实现。
(5)信息与沟通贯穿始终
(6)内部监督手段。