金融实时大数据
A. 朋友圈的 金融科技与金融大数据如何设置
近年来,人工智能有一系列的突破,在金融领域的应用也发展很快。我们做FDT的时候心回目中有一个答偶像,就是美国的文艺复兴科技公司,它旗下基金的平均回报率,在1989年到2009年间达到35%,比索罗斯和巴菲特高出10个百分点。2015年9月花旗做了一个预测,未来10年智能理财管理会增加5万亿美元的收入。高盛预测2025年AI为金融行业带来的增值每年达到430亿美元。2017年3月摩根大通发布了一款金金融合同解析软件,只需几秒就能完成以前律师们36万小时的工作。这说明人工智能很可能大规模的在商业,特别是在金融领域应用。而且,在金融领域应用大数据也有一些先天的优势条件和基础。刚才黄院士讲了,人工智能的前提是必须有海量的大数据,数据越多越能说明问题,而金融公司天生就是数据公司,银行也好,交易也好,每天和数据打交道,而且这个数据的质量和数量也能达到一定的要求,这是人工智能得以应用的一个非常重要的数字基础。另外,银行金融的业务相当多的是预测和决策类的,正是人工智能模型最擅长的领域。还有一点,金融作为全社会资源的配置工具,用AI对其加以优化,无疑有很大的社会意义和商业意义。
B. 金融行业的大数据前景怎样
放眼全球,金融行业也是大数据的应用重镇,无论从大数据应用综合价值潜力维度,还是平均数据量而言,金融行业大数据的应用综合价值潜力都非常高。
金融行业是所有行业大数据应用最全面、最成熟的行业,因此,其在整个大数据行业的占比也一直较高。据推算2015年,中国金融行业大数据应用规模年均增长率达到97.0%,超过23亿元。据不完全统计,2016年应用规模将达到44.29亿元。
随着金融行业大数据应用的加强已经深入,据前瞻产业研究院《全球金融大数据行业发展前景预测与投资战略规划分析报告》预计到2017-2022年,金融行业大数据应用市场规模年均复合增长率为55.21%,到2022年,中国金融行业大数据应用市场规模为497亿元。
不过,金融大数据还面临着不少阻碍,如内部各业务间存在信息孤岛现象、外部大数据整合难度大等。相信在大数据起到更大效果时,金融大数据的推进不会太大问题,未来前景广阔。
C. 财经或金融领域的大数据处理一天有多少数据量
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),平台有hadoop
D. 金融大数据应用面临哪些风险
1.金融科技巨头可能产生数据垄断
一些金融科技巨头凭借其在互联网领域的固有优势,掌握了大量数据,客观上可能会产生数据寡头的现象,可能会带来数据垄断。一些机构掌握了核心的信用数据资源,由于缺乏分享的激励机制,导致与征信的共享理念存在冲突。
2.存在数据孤岛现象,数据融合困难
政府和企业都面临数据孤岛难题。大数据时代,数据已经成为核心资源,企业出于保护商业机密或者节约数据整理成本的考虑而不愿意共享自身数据,一些政府部门也缺乏数据公开的动力。数据孤岛现象的存在,将导致大数据信用评估模型采用的数据维度和算法的不同,大数据征信模型的公信力和可比性容易遭到质疑。
3.数据安全和个人隐私保护难度升级
目前,大数据的获取大致有四种方法:自有平台积累、通过交易或合作获取、通过技术手段获取、用户自己提交的数据等。但是由于相关的法律法规体系尚不健全,数据交易存在许多不规范的地方,甚至出现数据非法交易和盗取信息的现象。大数据来源复杂多样加大了用户隐私泄露的风险,其一,我国金融大数据行业的发展乃至Fintech行业的发展,在很大程度上得益于互联网应用场景的发展,而大数据从互联网应用场景向金融领域的转移往往发生在一些金融科技企业的集团内部,这个过程缺乏监管和规范,可能会侵犯到用户的知情权、选择权和隐私权。其二,应用数据存在多重交易和多方接入的可能性,隐私数据保护的边界不清晰;其三,技术手段的加入,加大了信息获取的隐蔽性,一旦出现隐私泄露纠纷,用户将面临取证难、诉讼难的问题;其四,大数据采集数据的标准不一,用户的知情权、隐私权可能受到侵犯。可见,在大数据环境下,个人数据应用的隐私保护是一个复杂的消费者权益保护问题,涉及到道德、法律、技术等诸多领域。
E. 我是做金融的,想问一下大数据对金融行业有什么价值
当然有数据支持,可以说所有的行业,都能够很大幅度的提高精准率,无论是从成本还是从效果,都是大有裨益的。
要了解大数据优势有哪,对我这个行业有哪些突出性的优势。
谁是准确的目标受众?如何在合适的时间、合适的地点、以合适的方式传达给消费者正确的信息?随着数据搜集、存储、管理、分析、挖掘与应用的技术体系的发展,这些问题的答案已经可以显现于眼前。
怎么获取数据:网民通过C2C的互动,C2B的互动,B2B的互动,实时生产数据。这些数据汇聚在一起,就能够获取到网民当下的情绪、行为、关注点和兴趣点、归属地、移动路径、社会关系链等一系列有价值的信息。原本分散的信息通过分析、挖掘具有了关联性,了解用户真实的态度和需求。
利用数据获客:利用大数据做精准营销的人群定向投放,根据人群的行为轨迹,再结合其他关联数据,如社交属性等数据来对投放人群进行标签化管理。这样才能使得广告投放有千人千面的效果。
对于营销来说,了解用户、分析用户尤为重要,而每年花在数据分析上的人力物力更是数不胜数。对于营销来说,大数据更多的是支持,可以将更多的人力物力节省下来。
做数据精准获客营销,要找对获客系统运营商大数据,需要了解请留言。
F. 金融大数据怎么玩
金融行业面临最重要的问题是如何做到反欺诈。借端欺诈是一个主要的银专行风险来源,也是属银行反欺诈的重点聚焦领域,但对传统银行来说,往往采用的是一些传统的反欺诈手段,无论在效率、有效性、全面性以及成本上都是银行的短板,尤其随着互联网金融的兴起,非现场交易的增多,更是加剧了银行的风险防控的难度。天云大数据从银行反欺诈的脆弱点着手, 大幅提升银行欺诈风险的防控能力。
G. 金融大数据目前有什么好的方向和产品
大数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于数据的应用需求和应用水平进入新的阶段。
-
H. 金融行业大数据是怎么做的
如中投在线网站很多基于大数据处理的,该网站的理财产品实在太多了,都是用大数据来做批处理的。