人工智能抽象思维
1. 未来人工智能会取代人类文明吗我们应该如何看待这个问题
我们经常在科幻电影中看到那些被“妖魔化”的机器智能,它们虽然是被人类所创造,但是它们却拥有了与人类相匹敌的智慧与思维,并产生了野心,意图控制地球,取代人类文明。
电影中描绘的最可怕的一点是:由于人类文明最重要的资料都在计算机上,所以人工智能很快就控制了整个人类网络,包括各种武器按钮以及通信。人类被打得落花流水。
2. 什么是人工智能,从学科和能力两方面
人工智能是使机器做那些由人需要通过智能来做的事情的一门科学。即用机器来模仿人的智能。包括:感知能力,逻辑思维(抽象思维)能力,归纳与演绎,学习,行为能力。人工智能研究思维能力与推理能力(归纳与演绎是推理的方法之一)。
3. 关于人工智能
人脑有意识,电脑有意识吗?在科学极其发展的今天,电脑是否会超越人脑,人是否会成为电脑的奴隶?哲学不能不对这一问题做出回答。
人工智能是20世纪中叶科学技术所取得的重大成果之一。它的诞生与发展对人类文明产生了巨大的影响和效益。同时也引起了哲学意识与人工智能的理论探讨。
人工智能是相对于人类智能而言的。它是指用机械和电子装置来模拟和代替人类的某些智能。人工智能也称“机器智能”或“智能模拟”。当今人工智能主要是利用电子技术成果和仿生学方法,从大脑的结构方面模拟人脑的活动,即结构模拟。
人脑是智能活动的物质基础,是由上百亿个神经元组成的复杂系统。结构模拟是从单个神经元入手的,先用电子元件制成神经元模型,然后把神经元模型连接成神经网络(脑模型) ,以完成某种功能,模拟人的某些智能。如1957年美国康乃尔大学罗森布莱特等人设计的“感知机”;1975年日本的福岛设计的“认知机”(自组织多层神经网络) 。
电子计算机是智能模拟的物质技术工具。它是一种自动、高速处理信息的电子机器。它采用五个与大脑功能相似的部件组成了电脑,来模拟人脑的相应功能。这五个部件是:(1) 输入设备,模拟人的感受器(眼、耳、鼻等) ,用以接受外来的信息。人通过输入设备将需要计算机完成的任务、课题、运算步骤和原始数据采用机器所能接受的形式告诉计算机,并经输入设备把这些存放到存贮器中。(2) 存贮器,模拟人脑的记忆功能, 将输入的信息存储起来,供随时提取使用,是电子计算机的记忆装置。(3) 运算器,模拟人脑的计算、判断和选择功能,能进行加减乘除等算术运算和逻辑运算。(4) 控制器,人脑的分析综合活动以及通过思维活动对各个协调工作的控制功能,根据存贮器内的程序,控制计算机的各个部分协调工作。它是电脑的神经中枢。 (5)输出设备,模拟人脑的思维结果和对外界刺激的反映,把计算的结果报告给操作人员或与外部设备联系,指挥别的机器动作。
以上五部分组成的电脑是电子模拟计算机的基本部分,称为硬件。只有硬件还不能有效地模拟和代替人脑的某些功能,还必须有相应的软件或软设备。所谓软件就是一套又一套事先编好的程序系统。
人工智能的产生是人类科学技术进步的结果,是机器进化的结果。人类的发展史是人们利用各种生产工具有目的地改造第一自然( 自然造成的环境,如江河湖海、山脉森林等) ,创造第二自然( 即人化自然,如人造房屋、车辆机器等) 的历史。人类为了解决生理机能与劳动对象之间的矛盾,生产更多的财富,就要使其生产工具不断向前发展。人工智能,是随着科学技术的发展,在人们创造了各种复杂的机器设备,大大延伸了自己的手脚功能之后,为了解决迫切要延伸思维器官和放大智力功能的要求而产生和发展起来的。
从哲学上看,物质世界不仅在本原上是统一的,而且在规律上也是相通的。不论是机器、动物和人,都存在着共同的信息与控制规律,都是信息转换系统,其活动都表现为一定信息输入与信息输出。人们认识世界与在实践中获取和处理信息的过程相联系,改造世界与依据已有的信息对外界对象进行控制的过程相联系。总之,一切系统都能通过信息交换与反馈进行自我调节,以抵抗干扰和保持自身的稳定。因此,可以由电子计算机运用信息与控制原理来模拟人的某些智能活动。
从其它科学上来说,控制论与信息论就是运用系统方法,从功能上揭示了机器、动物、人等不同系统所具有的共同规律。以此把实际的描述形式化,即为现象和行为建立一个数学模型;把求解问题的方式机械化,即根据数学模型,制定某种算法和规则,以便机械地执行;把解决问题的过程自动化,即用符号语言把算法和规则编成程序,交给知识智能机器执行某种任务,使电子计算机模拟人的某些思维活动。所以,控制论、信息论是"智能模拟"的科学依据,“智能模拟”是控制论、信息论在实践中的最重要的实践结果。
人工智能是人类智能的必要补充,但是人工智能与人类智能仍存在着本质的区别:
1 、人工智能是机械的物理过程,不是生物过程。它不具备世界观、人生观、情感、意志、兴趣、爱好等心理活动所构成的主观世界。而人类智能则是在人脑生理活动基础上产生的心理活动,使人形成一个主观世界。因此,电脑与人脑虽然在信息的输入和输出的行为和功能上有共同之处,但在这方面两者的差别是十分明显的。从信息的输入看,同一件事,对于两个智能机具有相同的信息量,而对于两个不同的人从中获取的信息量却大不相同。“行家看门道,外行看热闹”就是这个道理。从信息的输出方面看,两台机器输出的同一信息,其信息量相等。而同一句话,对于饱于风霜的老人和天真幼稚的儿童,所说的意义却大不相同。
2 、人工智能在解决问题时,不会意识到这是什么问题,它有什么意义,会带来什么后果。电脑没有自觉性,是靠人的操作完成其机械的运行机能;而人脑智能,人的意识都有目的性,可控性,人脑的思维活动是自觉的,能动的。
3 、电脑必须接受人脑的指令,按预定的程序进行工作。它不能输出末经输入的任何东西。所谓结论,只不过是输入程序和输入数据的逻辑结果。它不能自主地提出问题,创造性地解决问题,在遇到没有列入程序的“意外”情况时,就束手无策或中断工作。人工智能没有创造性。而人脑功能则能在反映规律的基础上,提出新概念,作出新判断,创造新表象,具有丰富的想象力和创造性。
4 、人工机器没有社会性。作为社会存在物的人,其脑功能是适应社会生活的需要而产生和发展的。人们的社会需要远远超出了直接生理需要的有限目的,是由社会的物质文明与精神文明的发展程序所决定的。因此,作为人脑功能的思维能力,是通过社会的教育和训练,通过对历史上积累下来的文化的吸收逐渐形成的。人的内心世界所以丰富多采,是由于人的社会联系是丰富的和多方面的,人类智能具有社会性。所以要把人脑功能全面模拟下来,就需要再现人的思想发展的整个历史逻辑。这是无论多么“聪明”的电脑都做不到的。随着科学技术的发展,思维模拟范围的不断扩大,电脑在功能上会不断向人脑接近。但从本质上看,它们之间只能是一条渐近线,它们之间的界限是不会清除的。模拟是近似而不能是等同。
人工智能与人脑在功能上是局部超过,整体上不及。由于人工智能是由人造机器而产生的,因此,人工智能永远也不会赶上和超过人类智能。所谓“机器人将超过人奴役人”、“人将成为计算机思想家的玩物或害虫,…… 保存在将来的动物园”的“预言”是不能成立的。因为,它抹煞了人与机器的本质差别与根本界限。
人工智能充实和演化了辩证唯物主义的意识论。它进一步表明了意识是人脑的机能,物质的属性。电脑对人脑的功能的模拟,表明了意识并不是神秘的不可捉摸的东西,不是游离于肉体内外脱离人脑的灵魂,也不是人脑分泌出来的特殊物质形态,而是人脑的机能属性。这就进一步证明了意识本质的原理。
人工智能的出现深化了意识对物质的反作用的原理。人工智能是人类意识自我认识的产物。电脑的出现,意昧着人类意识已能部分地从人脑中分化出来,物化为物质的机械运动。这不仅延长了意识的器官,也说明意识能反过来创造"人脑"。这是意识对人脑的巨大的反作用。从意识与人脑的相互关系中进一步深化了意识对物质形态进步的反作用,意识作为最高的物质属性对于物质运动发展的反作用。
人工智能引起了意识结构的变化,扩大了意识论的研究领域。电脑作为一种新形态的机器而进入了意识器官的行列。它不仅能完成人脑的一部分意识活动,而且在某种功能上还优于人脑。如人脑处理信息和采取行动的速度不如电脑,记忆和动作的准确性不如电脑。因此,在现代科学认识活动中,没有人工智能,就不会有人类认识能力的突破性发展和认识范围的不断扩大。电脑不仅依赖于人,人也依赖于电脑。这就使得在意识论结构上增加了对人工智能的探讨以及对人机互补的关系的探讨。同时思维模拟,也把思维形式在思维中的作用问题突出出来,为意识论的研究提出了一个重要课题。
4. 现在人工智能发展到什么程度了
人工智能发展过去、现在和未来的总览。一起了解谷歌技术总监、人工智能专家Kurzweil、机器学习专家Jeremy Howard和Wait But Why博客Tim Urban等人的观点,我们在人工智能的发展路线图中处于什么阶段?什么时候会出现像人类一样厉害的人工智能,还有超过人类智能总和的超人工智能?
我们所说的人工智能(AI),是一个广义定义。虽然众说纷纭,大部分专家认为,人工智能发展有三个水准:
超人工智能(ASI)
第三类智能水准:超过所有人类智能总和的AI——用Tim Urban的话说,“从比人聪明一点点……到聪明一千万倍。”
那我们现在在哪个阶段呢?我们现在达到了第一个水准——弱人工智能——在很多方面,它已经进入了我们的生活中:
l 汽车里到处都是ANI,从可以在紧急情况下刹车的电脑,到可以调配汽车加油参数的系统。
l 谷歌搜索是一个很大的ANI,有很多非常复杂的方法将网页排序,知道给你显示什么。同样的,Facebook Newsfeed也是
l 电子邮件垃圾邮箱过滤器,知道什么是垃圾邮件、什么不是,并且学会按照你的偏好来过滤邮件。
l 你的电话就是一个小型ANI工厂……你用地图APP导航,收到定制化的音乐推荐,和Siri聊天等等。
例子不胜枚举。弱人工智能系统不怎么惊悚。失控的ANI会带来危害,但通常是独立事件。虽然ANI不会造成人类的生存性恐慌,相对人畜无害ANI应被视为一个先兆。每一次弱人工智能的创新进步,都在往强人工智能和超人工智能更近一步
5. 人工智能
人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。有人把人工智能分成两大类:一类是符号智能,一类是计算智能。符号智能是以知识为基础,通过推理进行问题求解。也即所谓的传统人工智能。计算智能是以数据为基础,通过训练建立联系,进行问题求解。人工神经网络、遗传算法、模糊系统、进化程序设计、人工生命等都可以包括在计算智能。
传统人工智能主要运用知识进行问题求解。从实用观点看,人工智能是一门知识工程学:以知识为对象,研究知识的表示方法、知识的运用和知识获取。
人工智能从1956年提出以来取得了很大的进展和成功。1976年Newell 和Simon提出了物理符号系统假设,认为物理符号系统是表现智能行为必要和充分的条件。这样,可以把任何信息加工系统看成是一个具体的物理系统,如人的神经系统、计算机的构造系统等。80年代Newell 等又致力于SOAR系统的研究。SOAR系统是以知识块(Chunking)理论为基础,利用基于规则的记忆,获取搜索控制知识和操作符,实现通用问题求解。Minsky从心理学的研究出发,认为人们在他们日常的认识活动中,使用了大批从以前的经验中获取并经过整理的知识。该知识是以一种类似框架的结构记存在人脑中。因此,在70年代他提出了框架知识表示方法。到80年代,Minsky认为人的智能,根本不存在统一的理论。1985年,他发表了一本著名的书《Society of Mind(思维社会)》。书中指出思维社会是由大量具有某种思维能力的单元组成的复杂社会。以McCarthy和Nilsson等为代表,主张用逻辑来研究人工智能,即用形式化的方法描述客观世界。逻辑学派在人工智能研究中,强调的是概念化知识表示、模型论语义、演绎推理等。 McCarthy主张任何事物都可以用统一的逻辑框架来表示,在常识推理中以非单调逻辑为中心。传统的人工智能研究思路是“自上而下”式的,它的目标是让机器模仿人,认为人脑的思维活动可以通过一些公式和规则来定义,因此希望通过把人类的思维方式翻译成程序语言输入机器,来使机器有朝一日产生像人类一样的思维能力。这一理论指导了早期人工智能的研究。
近年来神经生理学和脑科学的研究成果表明,脑的感知部分,包括视觉、听觉、运动等脑皮层区不仅具有输入/输出通道的功能,而且具有直接参与思维的功能。智能不仅是运用知识,通过推理解决问题,智能也处于感知通道。
1990年史忠植提出了人类思维的层次模型,表明人类思维有感知思维、形象思维、抽象思维,并构成层次关系。感知思维是简单的思维形态,它通过人的眼、耳、鼻、舌、身感知器官产生表象,形成初级的思维。感知思维中知觉的表达是关键。形象思维主要是用典型化的方法进行概括,并用形象材料来思维,可以高度并行处理。抽象思维以物理符号系统为理论基础,用语言表述抽象的概念。由于注意的作用,使其处理基本上是串行的。
6. 文科生谈人工智能在哪些不如人脑,feidian17
近50年来,人工智能走的是一条曲折发展的道路。1990年代初,研究者深感人工智能理论及技术的局限性,从而从不同角度和层次进行反思。同时,人工智能有待于人类对人脑工作机理的深入了解,需要神经生理学、神经解剖学给出更加详细的信息和证据。
人工智能交融了诸多学科,与哲学更是密不可分。尽管事实上,新近的哲学进展基本上没给科学带来任何冲击,并且哲学的讨论对象往往是悬而未决的(Russell S,Norvig P. Artificial Intelligence: Amodern Approach. NJ:Prentice Hall,1995. 817),但科学却在继续改变着我们对自己的认识。
正如恩格斯所说(恩格斯. 自然辩证法. 北京: 人民出版社, 1972. 187):“不管自然科学家采取什么样的态度,他们还是得受哲学的支配。问题只在于:他们是愿意受某种坏的时髦的哲学的支配,还是愿意受一种建立在通晓思维的历史和成就的基础上的理论思维的支配。”
着眼于更宽泛的视野和更远大的目标,要求从哲学角度寻求更加有效的人工智能研究方法。坚持物质决定意识的观点,辩证地看待已有的认识和方法,融合与集成各相关学科的成就和意见,是正确的出发点。
人工智能的哲学意义
人工智能是对人类智能的一种模拟和扩展,其核心是思维模拟。
思维
思维科学是研究思维的规律和方法的科学,钱学森将它划分为基础科学、技术科学和工程技术三部分,人工智能属于工程技术范畴(钱学森. 关于思维科学. 上海:上海人民出版社,1986.20)。人工智能研究中逻辑学派和心理学派之争,有时似使人感到迷惘而莫知所从,但从思维科学的角度来看,无非是形象思维和逻辑思维的关系问题,两者都属于思维科学的基础科学。抽象思维的不足在于缺乏结构的综合能力。只有形象思维才能综合出新的结构。这也许就是创造和学习最终必须具有形象思维的原因(潘云鹤. 模式识别与人工智能, 1991, 4(4): 7)。
不同的划分观点认为,思维科学体系的基础科学包括两大类:一类是总结人类思维经验、揭示思维对象的普遍规律和思维本身普遍规律的各种思维科学,包括哲学世界观、哲学史、认识论和逻辑学,是理论的思维科学。另一类思维科学包括研究思维主体——人脑的生理结构和功能,揭示思维过程生理机制的神经生理学和神经解剖学等。这种观点将认识论归在思维科学的基础科学范围内。其实两种观点,
都不否认人工智能和哲学通过认识论相联系。
认识论
认识论研究认识的源泉、发展、过程、能力、作用等一般规律问题。换言之,认识论研究的是知识及其形式和局限性。哲学家强调通过最大机会的观察和计算,明确什么是潜在可知的;而人工智能注重通过现有的观察和计算途径,弄清什么是可知的。而在实际情况中,人工智能和认识论在本质上是互相交融和兼备的。
认识论对人工智能的研究方向和方法具有指导意义,但并不意味它能替代具体的研究,也不表示任何人工智能的研究都要显式地考虑到认识论。由于对诸如世界的一般表达等问题还未真正达成一致,如果仅依赖从哲学中获得具体的丰富信息来编写计算机程序,人工智能将会处于非常无望的状态。
心智哲学和认知科学
心智是指人们的记忆、思想、意识、感情、意向、愿望、思维、智能等多种心理行为(章士嵘,王炳文. 当代西方著名哲学家评传(2).心智哲学.济南:山东人民出版社,1996)。普特南(H.Putnam)根据计算机科学对软件与硬件的划分,将心智与大脑的关系理解为功能状态和物理状态。西蒙(H.Simon)根据信息加工理论,认为人类思维本质上是信息加工过程,计算机也是信息加工系统,所以,计算机能思维而且能模拟人的思维。人们的心灵、精神世界历来是哲学家反思的对象,这一研究领域构成了心智哲学的主题。心智哲学在人工智能、脑科学、认知心理学、控制论、语言学等的推动下,呈现出生机勃勃的景象。
胡塞尔(E.Husserl)是第一位把心智表达的指向性作为其哲学中心的哲学家,他在心智哲学中第一次提出了关于心智表达作用的一般理论。他认为,智能是一种由语境规定的和由目标导引的活动,是一种对预期事实的搜素。
与心智哲学互相渗透的认知科学是1970年代末正式宣告诞生的交叉学科。它是人工智能、认知心理学、语言学、哲学、人类学、神经生理学等学科的综合,研究智能系统的工作原理。其核心思想是称为认知主义的思想,其中一个中心命题是智能行为可以由内在的“认知过程”即理性的思维过程来解释。因而,一个很自然的假设就是从与计算机相类比的心智模型出发来研究心智的工作原理,把认知过程理解为信息加工过程,把一切智能系统理解为物理符号系统。
心智哲学是较认知科学高一层次的理论,但两者的相互作用和影响是毋庸置疑的。心智哲学不应超越认知科学的研究成果而作任意的理论假设,认知科学也不应排斥心智哲学的理论成果去作盲目的探索。
认知心理学
认知心理学和人工智能,是认知科学的两个组成部分。人工智能使用了心理学的理论,心理学又借用了人工智能的成果。将人脑和计算机相类比,是发展认知心理学的一条主要途径。
认知心理学旨在认识人类的认知心理,将这种认识通过计算机程序语言表达出来;人工智能致力于用计算机语言描述人的智能,并用计算机加以实现。两者的共同点在于用计算机程序语言刻划人类智能。然而,它们也存在一个重要的区别。人工智能试图且已经给计算机施加了一个模拟人类智能的程序,该程序包括知道这个系统本身的过程,然后给系统以一定任务,它就会产生行为。这说明人工智能是确
实的、得到证实的。而认知心理学,还不能肯定信息加工过程是人类智能的唯一心理原因,就连此信息加工过程本身也没有直接的明确证据。认知心理学只能从行为去推断心智用什么程序来造成行为,带有很大假说性。
德雷福斯(L.Dreyfus)把胡塞尔看成当代认知心理学和人工智能的先驱。他认为超验现象学在两个方面与人工智能有关系:第一,胡塞尔十分自觉地把探索心里结构作为他的哲学研究的中心。第二,胡塞尔具体地说明了在意向活动中人们所期望的对象世界的构成,及其所包含的复杂的形式结构。德雷福斯指出,人的认知能力是通过实践而发展的。这种独特的认知能力为人类存在于世界的方式提供了无
限的丰富性,构成了人类所有智能行为的基础。认知心理学企图通过纯认识结构来把握一切智能而根本不考虑头脑的非认知方面,这种想法注定不会成功。一切智能和智能行为都必须追溯到人类对自身是什么的理解上,而这一点由于会陷入无穷的递归,所以人类永远不能完全弄清。人类智能的基础既不可能被分离出来,也不可能被清晰地理解。他还指出,胡塞尔的意识与明斯基(M.Minsky)的框架理论十分类似。人工智能在发展过程中最终不得不面对日常知识的表达问题,它们是困难的、关键的、在哲学上引人入胜的,人工智能至今仍在为之奋斗。
人工智能的物质基础
早在1950年代,就出现了两种争论激烈的观点:一种认为计算机是处理思维符号的系统,另一种认为是对大脑建模的媒介;一种致力于用计算机示例世界的形式化表达,另一种则仿真神经元的交互;一种把问题解决当作智能的范型;另一种强调学习;一种使用逻辑,另一种基于统计;一种是哲学上理性主义和还原主义的继承者,另一种将自己视作神经科学。事实上,它们分别代表了符号主义学派和连接
主义学派。
心理学中,定位于复杂思维与神经元之间的符号层次的理论很重要。符号是思维的材料,但也是物质的样式。“观念”与大脑可触知的生物物质之间有明显、根本的不同,这无疑对人工神经网络的建模具有意义。但很遗憾,目前人类对真实神经系统的了解非常有限,对自身脑结构及其活动机理的认识还十分肤浅,众多神经网络的模型实际上是极为简略粗糙并且带有某种“先验”。譬如,波尔茨曼机引入随机扰动来避免局部最小虽具有独特之处,然而却缺乏必要的神经生理学基础 (董军,潘云鹤. 人工智能与认识论问题的思考提纲.见:中国人工智能进展. 北京:北京邮电大学出版社,2001. 22)。
有观点认为,对神经信息处理机制的深入分析可能会引起计算科学革命性的变化。语言能力是人脑特有的高级功能,但对语言的中枢表象目前仍只有很模糊的认识,甚至连研究这类信息处理过程所采用的合适研究方法还至今阙如。为此,迫切需要方法论的指导,因为它对神经网络的研究及其作用是毋庸置疑的。
1980年代中后期,人们发现脑中存在混沌现象,由于它可能揭示脑活动的深层机制而受到广泛重视。从生理本质出发是研究神经网络的根本手段。混沌神经网络研究探索非稳状态下网络的动态行为和信息处理能力。混沌动力学为研究人工神经网络和人工智能提供了新的契机。这里并不是单纯提倡纯粹意义上的生理模拟,因为人类把握自然和社会的规律并非是一种“照搬照抄”的过程,人工神经网络的初衷也非“逼真”地描写真实神经系统,而只是根据物质基础和客观依据进行简化、抽象和模拟。
神经网络的基础结构更类似于脑,而不是标准计算机的结构。它们的单元并没有真实神经元那样复杂,它们的结构与新皮层的回路相比也过于简单。尽管神经网络具有这些局限性,但仍然显示出惊人的完成任务的能力。人脑对信息的处理采用的基于符号的串行逻辑推理过程,一开始就被现代数字计算机所采用。
有趣的是,仿佛有这样一条人工智能的“定理”:一旦某种思维的功能被编成程序,人们就不再认为它是“实际思维”的基本组成部分了。而人工智能的核心总是指那些还未能编制成程序的部分。
人工神经网络还有很多根本性、基础性的问题需要解决。在某种程度上,它仅仅作为一种算法,但这不能掩盖神经网络是在思维是物质世界的产物、是人脑的机能这样的前提下的尝试和产物。无论是对史前文明的探索,还是“天”外智能的好奇,都没有理由否认物质决定意识这个基本观点。
人类智慧与人工智能
对人的特质作出解释的模型很多是来自宗教、艺术等。例如,原始艺术的象征语言把人类的原始本能和超自然世界的各种意象以特有的符号手段结构化,它们被赋予特有的形式,从而组合成各种表现形态的形象系统。这让我们不仅了解到人类智能有着不同的具体表达,也明白智能是依赖于社会生活和客观现实的。
然而,道途艰辛。把人类原始的、潜意识的思想加以分解,有如分解佛教禅宗大师为迷惑心智以达到绝对虚无所下的玄秘功夫那样,十分困难。况且,要到达人类级的人工智能已被证明是困难的,而且进展缓慢。
辩证唯物主义不同意那种机器能够独立地思维、机器可以比人更聪明的观点,很重要的理由在于思维是生物长期进化、特别是社会活动的产物。哥德尔赞同人类的心智超过所有的机器的结论。计算机中能不断繁殖和复制自己的人工生命如病毒,最初也是由人类制造的。计算机的世界完全是由科学家们设计创造的,是人脑的结晶。
庄子与惠子有如下的对话。庄子与惠子游于濠梁之上,庄子曰:“倏鱼出游从容,是鱼之乐也。”惠子曰:“子非鱼,安知鱼之乐?”庄子曰:“子非我,安知我不知鱼之乐。”惠子曰:“我非子,固不知子矣,子固非鱼矣,子之不知鱼之乐全矣。”庄子曰:“请循其本,子曰‘汝安知鱼乐’云者,既已知吾知之而问我,我知之濠上也。”(庄子·秋水)
人类智慧与人工智能孰高孰底、熟胜孰负,智能的复杂和神秘,如同这段文字本身的内涵和后代的种种解析那样,引人入胜,令人悠然神往。
探寻人工智能的发展途径
人工智能研究者愿意用精神术语描述机器有两个原因。第一,希望给机器提供知识和信念的理论以使它们能对其用户知道的、不知道的和所想要的进行推理;第二,用户对机器的了解常常能用精神术语最好地表达。在人工智能的发展过程中,心理学和哲学自然而然与它互相影响。而人工智能与哲学的关系,最初是通过心理学这个桥梁的。
人工智能一开始是自上而下和自下而上相结合的。自上而下或“内涵式”的表述往往给人带来一种恍然大悟的感觉,自下而上或“外延式”的表述却像一份说明书。其实,的确需要两种途径:一种是自上而下的、把思想映射于神经元群上;另一种是自下而上的、用来解释思想如何由那些看起来是杂乱无章的神经元集群产生的。
认知科学发展中存在一个值得思考的奇怪现象,对诸如下棋、解密码之类的可以相对跟环境隔离的看似很困难的任务而言,计算机系统可以超过专门训练的人;然而对一些最通常的通过由长期进化形成的认知功能,比如视觉和听觉,经过几十年努力发展的人工智能系统还不如婴儿的能力。大脑的智力活动必须从进化的角度、从社会和历史发展的约束的角度来研究才能得到充分正确的理解。
虽然我们必须经常遵循有统整作用和简化作用的大原则,但也必须承认在科学里存在着不可还原的复杂性。讨论人工智能与认识论的关系,当然不能替代人工智能的研究,但它可使人工智能研究者不致如入沼泽而迷失方向。然而,遗憾的是,人工智能研究者往往会忽略人工智能与哲学的联系和基本的辩证思维方法——归纳和演绎,分析和综合等。事实上,每个人在自己的思维体验中都能感到分析与综合
的频繁与重要。但是,人类对这样一对基本思维机理的研究却如此薄弱。历史地看,人工智能的发展不时地陷入没有预想到的深层困境,这提醒我们不仅应当从人工智能发展的技术问题,而且应当从人工智能的最根本概念和理论上去寻找原因,人工智能需要更为宽广的眼界
和宏观的方法论指导。
7. 人与人工智能区别
人与人工智能的区别:
1、人工智能无法实现与人脑情感、意志、心态、情绪、经验等方面的自然交互。本质上,人工智能仅仅是物质世界范畴的概念,无法跨越到意识领域。
2、人脑的左右半球有着不同分工:左半脑擅长分析、逻辑、演绎、推理等理性抽象思维;右半脑擅长直觉、情感、艺术、灵感等感性形象思维。
迄今为止,人工智能的所有智能化表现仅仅在模仿人类左半脑的理性思维模式,而完全不具备右半脑的感性思维。“也就是说,目前的人工智能技术还很难应对具有显著人类主观意识影响的社会文化和意识领域的各类问题,而人脑却可以通过长期在复杂社会环境下的学习成长轻松应对这类问题。
3、机器不可能产生自己的情感。机器人系统能够做到部分理解场景、环境及对话内容,并根据其结果做出相应的反应或者表情。但要机器人或人工智能系统完全达到人类的水平,有自发的情感和创造性,那是很难实现的,或者说不可能实现。
(7)人工智能抽象思维扩展阅读:
人工智能影响
1、人工智能对自然科学的影响。在需要使用数学计算机工具解决问题的学科,AI带来的帮助不言而喻。更重要的是,AI反过来有助于人类最终认识自身智能的形成。
2、人工智能对经济的影响。专家系统更深入各行各业,带来巨大的宏观效益。AI也促进了计算机工业网络工业的发展。但同时,也带来了劳务就业问题。由于AI在科技和工程中的应用,能够代替人类进行各种技术工作和脑力劳动,会造成社会结构的剧烈变化。
3、人工智能对社会的影响。AI也为人类文化生活提供了新的模式。现有的游戏将逐步发展为更高智能的交互式文化娱乐手段,今天,游戏中的人工智能应用已经深入到各大游戏制造商的开发中。
伴随着人工智能和智能机器人的发展,不得不讨论是人工智能本身就是超前研究,需要用未来的眼光开展现代的科研,因此很可能触及伦理底线。作为科学研究可能涉及到的敏感问题,需要针对可能产生的冲突及早预防,而不是等到问题矛盾到了不可解决的时候才去想办法化解。
8. 终于有人把“人工智能”讲明白是怎么回事了
究竟什么是人工智能?
人工智能的概念很宽泛;
我们的日常已经有很多人工智能的应用了;
人工智能不等于科幻电影,科幻电影呈现的更多是超人工智能阶段的场景。
弱:擅长于单方面的能力,如“AlphaGo”只能下象棋,如“盒谐”只会鉴黄;
强:能力与人类比肩,有抽象思维;
超:强过人类万亿倍。。。届时人类是否存在已经是个未知数了,或许会像《三体》中的人类那样,脱水以度过劫难。
人工智能分几类?三类:
随后文章展开想象的更多是超人工智能阶段,但实际上,弱人工智能才是和目前人的生活息息相关的。行业巨头们正在努力找到通往强人工智能的路,花费巨资,仍难以企及。
只是这条路,还很远,现阶段,尽可以放心享受弱人工智能给人来带来的便捷生活。