① “揭秘”大数据的10个神话

“揭秘”大数据的10个神话
也许对大数据更好的一个类比是它就像一匹意气风发的冠军赛马: 通过适当的训练和天赋的骑师,良种赛马可以创造马场记录–但没有训练和骑手,这个强大的动物根本连起跑门都进不了。
为了确保你组织的大数据计划保持正轨,你需要消除以下10种常见的误解。
1. 大数据就是‘很多数据’
大数据从其核心来讲,它描述了结构化或非结构化数据如何结合社交媒体分析,物联网的数据和其他外部来源,来讲述一个”更大的故事”。该故事可能是一个组织运营的宏观描述,或者是无法用传统的分析方法捕获的大局观。从情报收集的角度来看,其所涉及的数据的大小是微不足道的。
2.大数据必须非常干净
在商业分析的世界里,没有“太快”之类的东西。相反,在IT世界里,没有“进垃圾,出金子”这样的东西,你的数据有多干净?一种方法是运行你的分析应用程序,它可以识别数据集中的弱点。一旦这些弱点得到解决,再次运行分析以突出 “清理过的” 区域。
3.所有人类分析人员会被机器算法取代
数据科学家的建议并不总是被前线的业务经理们执行。行业高管Arijit Sengupta在 TechRepublic 的一篇文章中指出,这些建议往往比科学项目更难实施。然而,过分依赖机器学习算法也同样具有挑战性。Sengupta说,机器算法告诉你该怎么做,但它们没有解释你为什么要这么做。这使得很难将数据分析与公司战略规划的其余部分结合起来。
预测算法的范围从相对简单的线性算法到更复杂的基于树的算法,最后是极其复杂的神经网络。
4.数据湖是必须的
据丰田研究所数据科学家JimAdler说,巨量存储库,一些IT经理们设想用它来存储大量结构化和非结构化数据,根本就不存在。企业机构不会不加区分地将所有数据存放到一个共享池中。Adler说,这些数据是 “精心规划”的,存储于独立的部门数据库中,鼓励”专注的专业知识”。这是实现合规和其他治理要求所需的透明度和问责制的唯一途径。
5.算法是万无一失的预言家
不久前, 谷歌流感趋势项目 被大肆炒作,声称比美国疾病控制中心和其他健康信息服务机构更快、更准确地预测流感疫情的发生地。正如《纽约客》的Michele Nijhuis 在 2017年6月3日的文章 中所写的那样, 人们认为与流感有关词语的搜索会准确地预测疫情即将爆发的地区。事实上,简单地绘制本地温度是一个更准确的预测方法。
谷歌的流感预测算法陷入了一个常见的大数据陷阱——它产生了无意义的相关性,比如将高中篮球比赛和流感爆发联系起来,因为两者都发生在冬季。当数据挖掘在一组海量数据上运行时,它更可能发现具有统计意义而非实际意义的信息之间的关系。一个例子是将缅因州的离婚率与美国人均人造黄油的消费量挂钩:尽管没有任何现实意义,但这两个数字之间确实存在“统计上显著”的关系。
6.你不能在虚拟化基础架构上运行大数据应用
大约10年前,当”大数据”首次出现在人们眼前时,它就是Apache hadoop的代名词。就像VMware的Justin Murray在 2017年5月12日的文章 中所写的,大数据这一术语现在包括一系列技术,从NoSQL(MongoDB,Apache Cassandra)到Apache Spark。
此前,批评者们质疑Hadoop在虚拟机上的性能,但Murray指出,Hadoop在虚拟机上的性能与物理机相当,而且它能更有效地利用集群资源。Murray还炮轰了一种误解,即认为虚拟机的基本特性需要存储区域网络(SAN)。实际上,供应商们经常推荐直接连接存储,这提供了更好的性能和更低的成本。
7.机器学习是人工智能的同义词
一个识别大量数据中模式的算法和一个能够根据数据模式得出逻辑结论的方法之间的差距更像是一个鸿沟。ITProPortal 的Vineet Jain在 2017年5月26日的文章 中写道,机器学习使用统计解释来生成预测模型。这是算法背后的技术,它可以根据一个人过去的购买记录来预测他可能购买什么,或者根据他们的听歌历史来预测他们喜欢的音乐。
虽然这些算法很聪明,但它们远远不能达到人工智能的目的,即复制人类的决策过程。基于统计的预测缺乏人类的推理、判断和想象力。从这个意义上说,机器学习可能被认为是真正AI的必要先导。即使是迄今为止最复杂的AI 系统,比如 IBM沃森 ,也无法提供人类数据科学家所提供的大数据的洞察力。
8.大多数大数据项目至少实现了一半的目标
IT经理们知道没有数据分析项目是100%成功的。当这些项目涉及大数据时,成功率就会直线下降,NewVantagePartners最近的调查结果显示了这一点。在过去的五年中,95%的企业领导人表示,他们的公司参与了一个大数据项目,但只有48.4%的项目取得了”可衡量的结果”。
NewVantage Partners的大数据执行调查显示, 只有不到一半的大数据项目实现了目标,而 “文化”变化是最难实现的。
事实上,根据2016年10月发布的 Gartner的研究结果 ,大数据项目很少能跨过试验阶段。Gartner的调查发现,只有15%的大数据实现被部署到生产中,与去年调查报告的14%的成功率相对持平。
9.大数据的增长将减少对数据工程师的需求
如果你公司大数据计划的目标是尽量减少对数据科学家的需求,你可能会得到令人不快的惊喜。 2017 Robert Half 技术薪资指南 指出, 数据工程师的年薪平均跃升到13万美元和19.6万美元之间, 而数据科学家的薪资目前平均在11.6万美元和16.3万美元之间, 而商业情报分析员的薪资目前平均在11.8万美元到13.875万美元之间。
10.员工和一线经理将张开双臂拥抱大数据
NewVantagePartners的调查发现,85.5%的公司都致力于创造一个“数据驱动的文化”。然而,新的数据计划的整体成功率仅为37.1%。这些公司最常提到的三个障碍是缺乏组织一致性(42.6%),缺乏中层管理人员的点赞和理解(41%),以及业务阻力或缺乏理解(41%)。
未来可能属于大数据,但获得这一技术的好处需要大量的针对多样人性的辛勤工作。

② 有没有什么有趣的关于大数据时代的故事

你是要说大数据时代存在的大数据的典型的案例与应用吧??典型的就内是啤酒和尿布的例子容啊,为什么啤酒和尿布在一起会促进销量呢?尿布都是父亲去买,看到啤酒自然就想犒劳一下自己了。就是这么个道理。柠檬学院大数据。

③ 生活中的大数据例子

1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

目前位于美国加利福尼亚州的PredPol公司在某种程度上把利用大数据预测犯罪变成了现实。

PredPol 推出的犯罪活动预测软件主界面是一张城市地图,看起来与谷歌地图相似。它会根据某一地区过往的犯罪活动统计数据,借助特殊算法,计算出某地发生犯罪的概率、犯罪类型,以及最有可能犯罪的时间段。

它还可以用红色方框表示需要提高警惕的犯罪“热点”地区,警方可以通过个人电脑、手机或平板电脑对其进行在线查看。

犯罪预测软件实际上是从地震预测软件进化而来的,它能处理大量犯罪数据,尤其是犯罪地点和犯罪时间,然后再联系已知的犯罪行为,比如窃贼通常倾向于在他们最熟悉的社区犯罪等,最终给出一个较为完善的结果。

每次运算结束后,犯罪预测软件会给出一张画出了红色方框的地图,这些红色方框代表盗窃行为可能发生的“热点”地区,有些时候这些区域能准确地缩小至很小的范围。

警察局的上司会吩咐属下,当他们没在处理报警电话时,就应该花时间在这些高危区域中巡逻,最好是每两小时巡逻至少15分钟。这样做的重点更在于通过在软件画出的高危区中高调巡逻而降低犯罪,而非等案子发生后破案。

2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

Google流感趋势(Google Flu Trends,GFT)是Google于2008年推出的一款预测流感的产品。Google认为,某些搜索字词有助于了解流感疫情。Google流感趋势会根据汇总的Google搜索数据,近乎实时地对全球当前的流感疫情进行估测。

3、麻省理工学院利用手机定位数据和交通数据建立城市规划。

目前手机移动网络实现了城乡空间区域的全覆盖,城乡人口中手机终端的持有率和使用率已经达到相当高的比例,手机定位数据契合了城乡人口空间分布与活动规律的分析需求。

根据手机信号在真实地理空间上的覆盖情况,将手机用户时间序列的移动信号数据,映射至现实的地理空间位置,即可完整、客观地还原出手机用户的现实活动轨迹,从而挖掘得到人口空间分布与活动联系特征信息。

4、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

(3)与大数据有关的有趣故事扩展阅读

经李克强总理签批,2015年9月,国务院印发《促进大数据发展行动纲要》(以下简称《纲要》),系统部署大数据发展工作。

《纲要》明确,推动大数据发展和应用,在未来5至10年打造精准治理、多方协作的社会治理新模式,建立运行平稳、安全高效的经济运行新机制,构建以人为本、惠及全民的民生服务新体系,开启大众创业、万众创新的创新驱动新格局,培育高端智能、新兴繁荣的产业发展新生态。

未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。

④ 在生活中,我们碰到过的大数据的例子

去餐厅吃饭 或者是去购物等 都是会利用到大数据的。

⑤ 大数据时代 “孟母三迁”的故事已OUT了

大数据时代 “孟母三迁”的故事已OUT了
“孟母三迁”的故事,相信很多人都知道,这是每个孩子在童年时代都听过的故事,也是每位母亲都熟悉的教子素材。
孟母择邻来自汉代刘向《列女传·邹孟轲母》:“邹孟轲之母也,号孟母。其舍近墓,孟子之少也,嬉游为墓间之事,踊跃筑埋。孟母曰:‘此非吾所以居处子。’乃去。舍市傍,其嬉戏为贾人炫卖之事。孟母又曰:‘此非吾所以居处子也。’复徙舍学宫之傍。其嬉游乃设俎豆揖让进退。孟母曰:‘真可以居吾子矣。’遂居之。及孟子长,学六艺,卒成大儒之名。”后来这个故事编入《三字经》:“昔孟母,择邻处。”以此赞赏圣人成长的道路——但稍懂得孔孟成长经历的人都知道,孔子和孟子的经历是差不多的,都是3岁丧父,母仪教诲。
从孟子的第一个居处来看,正是孔子在父亲去世后居住的环境,当时,孔子的母亲颜征在抱着年幼的他搬出孔门,移居贫贱者的聚居区“阙里”,这是个包括祭祀、脚夫等五行八作俱全的杂居之所。正是在这里,孔子学着大人祭天祭祖,“为儿嬉戏,常陈俎豆,设礼容”。孔子在母亲教导下,努力学习做人与生活的本领,故孔子自述:“吾少也贱,故多能鄙事。”孔子也曾做过丧礼上为死者执绋吹打的吹鼓手,逐渐学会主持丧礼。先秦将执办丧礼的司仪称为傧相。傧相在《周礼》中称为“胥”。“胥”又作“需”,“需”“儒”相通。正是这种环境滋生了孔子的少年理想,向着儒家学说励志勤学。
再看孟母第二次搬家到闹市区,孟子“嬉戏为贾人炫卖之事”。且莫说孟子并非商贾,即便是,与学习儒家经典也不是冲突的。子贡就是卫国商人,后来成为孔门贤人。往近的说,沈阳五爱市场是国际上出名的商业基地,但择校到七中去的学生源源不断,这似乎与孟母的主张相悖。
孟母最后安居之处,似乎重复着孔子的童年兴趣,而与国子之学“礼坏乐崩”大相径庭。
看来,孟子成才与孟母择邻似乎关系不大。而按照孟母择邻的逻辑,范仲淹应成为僧侣——他从小就在醴泉寺寄宿读书。
话说回来,世异则事异,事异则备变。如今已是大数据时代,“云”(网络)所引发的教育革命已悄然到来,锋芒所向,直接针对工业文明时代的传统教育。传统学校映射的是机器批量生产模式:固定学制、班级、秧田式的课桌椅、统一的教材、按课表编排的教学进程、铃声、教师评语、考试选拔(淘汰)制。而如今的教育将强调个性化教育,使择校得不偿失。
——少把精力搭在路上,为了走更远的路。
大数据背景下的学习解放了人们原有的天分,使原本处于基因状态的学习能力,在云计算的生境下生长出来。越来越少的课堂,越来越多的云资源;越来越少的讲授,越来越多的交互……云教育资源极其丰富,学习可以在任何场合发生。通过对大数据技术的应用,将有利于个性化学习,标准化的学习内容由学习者自组织学习取而代之,学校和教育者更多是关注学习者个性化培养,教学由知识灌输转变为启发助学。
——少在班级和年部攀比,为了登攀更高的山峰。
学习是由他组织到自组织的行为,但作为由学习决定的学校教育全然成为他组织行为,将学习者引向囧途。比尔·盖茨曾预言,在21世纪,“我们可以在互联网上找到质量最佳的授课内容,这些内容比任何单一的学校都要强。无论公众接受的教育程度如何,都应对互联网的各种资源加以利用。”
——少对学校有更多的依赖,为了对自己有更大的信心。
几千年来,教育者试图花费巨大的时间和精力所做的工作是:将提炼过的教师的思维逻辑或者书本的思维逻辑连同知识容量一起拷贝到学生的大脑中。这种标准化、规范化的教育,只能保证濡化,即代际的文化传承,而丢弃了涵化,即横向的交流。而在云计算的今天,教育的真谛不是技术方法的教化,而是对学习者的支持与服务。而云服务乃是学习的最大资源。
在当前的大数据时代下,“孟母三迁”的故事已经OUT了,这是因为,大数据正在推动教育向个性化、高层次方向发展,其全部奥秘只不过是学习、教学、教育、学生、教师、学校等概念的重构而已。就是说,当父母的要在大数据面前反思自己,将择校变成择教,稳妥地引领孩子多种能力和智慧的发展,这是家庭教育成功的关键。向孟母那种教育方式,已经不适合现代的孩子了。

⑥ 简述身边大数据成功案例并且用了哪些大数据的数据达到什么效果

随着大数据时代的到来,大数据早已被逐步的运用在我们生活中的方方面面,那么除了之前众所周知的大数据杀熟事件,对于大数据你还了解多少呢?科学运用案例你又知道多少?今天就跟随千锋小编一起来看看。
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
……
种种的案例实在是太多,或许我们永远说不完一样,所以我们就来看一看大数据被科学运用的一个经典案例:
“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
其实大数据,其影响除了以上列举的方面外,它同时也能在经济、政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。

⑦ 关于大数据应用有什么例子

大数据应用实例:

1、关能源行业大数据应用

计算居民用电量。

2、职业篮球赛大数据应用

专业篮球队会通过搜集大量数据来分析赛事情况,然而他们还在为这些数据的整理和实际意义而发愁。通过分析这些数据,找到对手的弱点。

3、保险行业大数据应用

集中处理所有的客户信息。

⑧ 什么是大数据,大数据的典型案例有哪些

随着大数据时代的到来,大数据早已被逐步的运用在我们生活中的方方面面,那么除了之前众所周知的大数据杀熟事件,对于大数据你还了解多少呢?科学运用案例你又知道多少?今天就跟随千锋小编一起来看看。
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
……
种种的案例实在是太多,或许我们永远说不完一样,所以我们就来看一看大数据被科学运用的一个经典案例:

“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
其实大数据,其影响除了以上列举的方面外,它同时也能在经济、政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。

⑨ 大数据时代,几个例子告诉你什么叫大数据

例子:比如,阿里每天都在收集每一个淘宝用户的各个方面的信息参考(千人千面内)。然后再用大数据算法来推容荐给你现在需要的产品,或者广告,这个就是大数据。我说的是最浅显的一种大数据。 大数据就没有隐私,手机里的APP都回收集你的一切的数据,一切的数据,这样呢,你在淘宝上看了看一款手机,那么当你关了淘宝,打开了今日头条,你如果注意的话,你会发现,头条今日推荐你的广告就是手机,文章内容也会偏向手机之内的。这就是大数据。

  • 所谓大数据无非就是一大堆数据。

  • 只不过,这个数据有点大:

  • 小的 1、2 G,多的上千、上万 G

  • 然后企业利用这些数据 + 程序 code,分析出自己想要的东西:

  • 用户行为

  • 用户习惯

  • 怎么才能从用户身上赚到钱。