大数据相关资料
Ⅰ 大数据的内容和基本含义
“大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,什么是大数据概念呢,大数据概念怎么理解呢,一起来看看吧。
1、大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
2、大数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到其内在规律。
3、大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。
4、大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。
5、大数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对,挖掘主效基因。例子还有很多。
6、大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。
Ⅱ 大数据主要学什么
大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术等。
主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、java编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。
旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。
(2)大数据相关资料扩展阅读:
越来越多的行业对大数据应用持乐观的态度,大数据或者相关数据分析解决方案的使用在互联网行业,比如网络、腾讯、淘宝、新浪等公司已经成为标准。而像电信、金融、能源这些传统行业,越来越多的用户开始尝试或者考虑怎么样使用大数据解决方案,来提升自己的业务水平。
在“大数据”背景之下,精通“大数据”的专业人才将成为企业最重要的业务角色,“大数据”从业人员薪酬持续增长,人才缺口巨大。
Ⅲ 大数据相关的内容是什么
就目前而言,这个大数据相对于能讲是一个比较宽泛,而且比较笼统的一个方向,因此如果你想写相关的内容或者写相关软文的话,首先要搞清楚想了解的大数据方向和内幕。这就意味着你所想要得到大数据或者想要写论文的这个大数据方向是属于日常生活,还是属于科技?弄清楚了,方向之后再进行内容的归类和进一步拓展。
Ⅳ 大数据的主要学习内容有哪些
大数据主要的学习内容,看下图
大数据学习内容
按照顺序学习就可以了,希望你早日学有所成。
Ⅳ 有关大数据的信息
大数据是信复息技术与专业技术、制信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于数据的应用需求和应用水平进入新的阶段。
-
Ⅵ 大数据包括哪些
大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存回储、NoSQL数据库答、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。
大数据主要技术组件:Hadoop、HBase、kafka、Hive、MongoDB、Redis、Spark 、Storm、Flink等。
大数据技术包括数据采集,数据管理,数据分析,数据可视化,数据安全等内容。数据的采集包括传感器采集,系统日志采集以及网络爬虫等。数据管理包括传统的数据库技术,nosql技术,以及对于针对大规模数据的大数据平台,例如hadoop,spark,storm等。数据分析的核心是机器学习,当然也包括深度学习和强化学习,以及自然语言处理,图与网络分析等。
Ⅶ 大数据学习资料一般有些什么呀
大数据技术的学习,由浅入深依次掌握:
Java语言基础:
Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射,多线程、Swing程序与集合类;
HTML、CSS与JavaScript:
PC端网站布局、HTML5+CSS3基础、WebAPP页面布局、原生javascript交互功能开发、Ajax异步交互、jQuery应用;
JavaWeb和数据库:
数据库、javaWeb开发核心、JavaWeb开发内幕;
Linux基础:
Linux安装与配置、系统管理与目录管理、用户与用户组管理、Shell编程、服务器配置、Vi编辑器与Emacs编辑器;
Hadoop生态体系:
Hadoop起源与安装、MapRece快速入门、Hadoop分布式文件系统、Hadoop文件I/O详解、MapRece工作原理、MapRece编程开发、Hive数据仓库工具、开源数据库HBase、Sqoop与Oozie;
Spark生态体系:
Spark简介、Spark部署和运行、Spark程序开发、Spark编程模型、作业执行解析、Spark SQL与DataFrame、深入Spark Streaming、Spark MLlib与机器学习、GraphX与SparkR、spark项目实战、scala编程、Python编程;
Storm实时开发:
storm简介与基本知识、拓扑详解与组件详解、Hadoop分布式系统、spout详解与bolt详解、zookeeper详解、storm安装与集群搭建、storm-starter详解、开源数据库HBase、trident详解;
Ⅷ 大数据技术包括哪些
大数据技术包括数据收集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现。
1、数据收集:在大数据的生命周期中,数据采集处于第一个环节。根据MapRece产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。
2、数据存取:大数据的存去采用不同的技术路线,大致可以分为3类。第1类主要面对的是大规模的结构化数据。第2类主要面对的是半结构化和非结构化数据。第3类面对的是结构化和非结构化混合的大数据,
3、基础架构:云存储、分布式文件存储等。
4、数据处理:对于采集到的不同的数据集,可能存在不同的结构和模式,如文件、XML 树、关系表等,表现为数据的异构性。对多个异构的数据集,需要做进一步集成处理或整合处理,将来自不同数据集的数据收集、整理、清洗、转换后,生成到一个新的数据集,为后续查询和分析处理提供统一的数据视图。
5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
6、数据挖掘:目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
7、模型预测:预测模型、机器学习、建模仿真。
8、结果呈现:云计算、标签云、关系图等。
Ⅸ 大数据主要学什么内容
大数据开发工程师是大数据领域一个比较热门的岗位,有大量的传统应用需要进行大数据改造,因此岗位有较多的人才需求。这个岗位需要掌握的知识结构包括大数据平台体系结构,比如目前常见的Hadoop、Spark平台,以及众多组件的功能和应用,另外还需要掌握至少一门编程语言,比如Java、Python、Scala等。
大数据分析师是大数据领域非常重要的岗位,大数据分析师需要掌握的知识结构包括算法设计、编程语言以及呈现工具,算法设计是大数据分析师需要掌握的重点内容,而编程语言的作用则是完成算法的实现。另外,大数据分析师还需要掌握一些常见的分析工具。
大数据运维工程师的主要工作内容是搭建大数据平台、部署大数据功能组件、配置网络环境和硬件环境、维护大数据平台,大数据运维工程师需要具备的知识结构包括计算机网络、大数据平台体系结构、编程语言(编写运维脚本)等,通常情况下,大数据运维工程师也需要对数据库有深入的了解。