❶ 如何用大数据分析创造商业价值

大数据分析是研究大量且多样的数据集(即大数据)的过程,从而揭示隐藏的模式,未知的相关性,市场趋势,客户偏好和其他有用信息,这些信息可帮助公司做出更明智的商业决策。通过专业的分析系统和软件,大数据分析可以指明商业收益的方向,比如新的机遇,有效的营销,更好的客户服务,提高运营效率以及竞争优势等等。
以下是通过大数据分析将大大受益的十大行业:
1. 银行和证券
通过网络活动监控和自然语言处理程序,监控金融市场,从而减少欺诈幸福易。交易委员会正在使用大数据分析监控股票市场,避免非法交易的发生。
2. 通讯和媒体
同时在多个平台(移动,网络和电视)上实时报道世界各地的事件。媒体的一部分,音乐行业使用大数据关注最新的趋势,并通过自动调谐软件创作出流行的曲调。
3. 体育
了解特定地区针对不同活动的收视率模式,并通过分析来监测个人球员和球队的表现。像板球世界杯,FIFA世界杯和温布尔顿国际网球锦标赛的体育赛事均有使用大数据分析。
4. 医疗保健
收集公共卫生数据,从而更快地应对个人健康问题,并掌握新病毒株(如埃博拉病毒)在全球传播的状态。不同国家卫生部门合并使用大数据分析工具,以便在人口普查后进行数据收集。
5. 教育
针对目前快速发展的各种领域,更新和升级相关文献。世界各地的大学均使用大数据来检测和追踪学生和教师的情况,并通过不同科目的出席率分析学生的兴趣喜好。
6. 制造业
通过大数据提高供应链管理,提高生产率。制造企业使用这些分析工具,确保以最佳方式分配生产资源,从而获得最大效益。
7. 保险
通过预测分析处理各种业务,从开发新产品到应对索赔。保险公司使用大数据了解需求最大的政策计划,并产生更多收益。
8. 消费者贸易
预测和管理人员编制以及库存需求。消费者贸易公司通过会员制度,记录会员情况从而发展贸易。
9. 交通运输
制定更好的路线规划,交通监控和物流管理。主要是政府为了避免交通堵塞而设立的。
10. 能源
通过智能电表减少电气泄漏,并帮助用户管理能源使用情况。负荷调度中心使用大数据分析来监测负荷模式,并根据不同的参数分析能源消耗趋势之间的差异,并节约能源。

❷ 大数据可以通过以下哪些方式为企业创造价值

knowlesys舆情认为:

大数据能够帮助企业预测经济形势、把握市场态势、了解消费需求、提高研发效率,不仅具有巨大的潜在商业价值,而且为企业提升竞争力提供了新思路。企业怎样利用大数据提升竞争力?这里从企业决策、成本控制、服务体系、产品研发四个方面加以简要讨论。

企业决策大数据化。现代企业大都具备决策支持系统,以辅助决策。但现行的决策支持系统仅搜集部分重点数据,数据量小、数据面窄。企业决策大数据化的基础是企业信息数字化,重点是数据的整理分析。首先,企业需要进行信息数字化采集系统的更新升级。按各决策层级的功能建立数据采集系统,以横向、纵向、实时三维模式广泛采集数据。其次,企业需要推进决策权力分散化、前端化、自动化。对多维度的数据进行提炼整合,在人为影响起主要作用的顶层,提高决策指标信息含量和科学性;在人为影响起次要作用的底层,推进决策指标量化,完善决策支持系统和决策机制。大数据决策机制让数据说话,可以减少人为干扰因素,提高决策精准度。

成本控制大数据化。目前,很多企业在采购、物流、储存、生产、销售等环节引入了成本控制系统,但系统间融合度较低。企业可对现有成本控制系统进行改造升级,打造大数据综合成本控制系统。其一,在成本控制的全过程采集数据,以求最大限度地描述事物,实现信息数字化、数据大量化。其二,推进成本控制标准、控制机理系统化。量化指标,实现成本控制自动化,减少人为因素干扰;细化指标,以获取更精确的数据。其三,构建综合成本控制系统,将成本控制所涉及的从原材料采购到产品生产、运输、储存、销售等环节有机结合起来,形成一个综合评价体系,为成本控制提供可靠依据。成本控制大数据化以预先控制为主、过程控制为中、产后控制为辅的方式,可以最大限度降低企业运营成本。

服务体系大数据化。品牌和服务是企业的核心竞争力,服务体系直接影响企业的生存发展。优化服务体系的重点是健全沟通机制、联络机制和反馈机制,利用大数据优化服务体系的关键是找到服务体系中存在的问题。首先,加强数据收集,对消费者反馈的信息进行分类分析,找到服务体系的问题,然后对症下药,建立高效服务机制,提高服务效率。其次,将服务方案移到线上,打造自动化服务系统。快速分析、比对消费者服务需求信息,比对成功则自动进入服务程序,实现快速处理;比对失败则转入人工服务系统,对新服务需求进行研究处理,并快速将新服务机制添加至系统,优化服务系统。服务体系大数据化,可以实现服务体系的高度自动化,最大程度提高服务质量和效率。

产品研发大数据化。产品研发存在较高风险。大数据能精确分析客户需求,降低风险,提高研发成功率。产品研发的主要环节是消费需求分析,产品研发大数据化的关键环节是数据收集、分类整理和分析利用。企业官网的消费者反馈系统、贴吧、论坛、新闻评价体系等是消费者需求信息的主要来源,应注重从中收集数据。同时,可与论坛、贴吧、新闻评价体系合作构建消费者综合服务系统,完善消费者信息反馈机制,实现信息收集大量化、全面化、自动化,为产品研发提供信息源。然后,对收集的非结构化数据进行分类整理,以达到精确分析消费需求、缩短产品研发周期、提高研发效率的目的。产品研发大数据化,可以精准分析消费者需求,提高产品研发质量和效率,使企业在竞争中占据优势。

❸ 如何正确认识大数据的价值和效益

1、数据使用必须承担保护的责任与义务

我国数据流通与数据交易主要存在以下问题:数据源活性不够,数据中介机构还处于起步阶段;多源数据的汇集技术尤其是非结构化数据分析技术滞后;缺乏熟悉不同行业并掌握在特定领域使用数据技术的人才。

数据的价值在于融合与挖掘,数据流通、交易有利于促进数据的融合和挖掘,搞活数据从而产生效益。数据共享开放、流通交易和数据保护及数据安全对数据技术提出严峻挑战,对法律的制定及执行提出了很高要求。为此,数据使用必须承担保护的责任与义务。

❹ 大数据是什么有什么价值作用

“大数据”是指以多元形式,自许多来源搜集而来的庞大数据组,往往具有实时性。在企业对企业销售的情况下,这些数据可能得自社交网络、电子商务网站、顾客来访纪录,还有许多其他来源。这些数据,并非公司顾客关系管理数据库的常态数据组。
大数据的应用其实早已渗透到人们生活中的方方面面:亚马逊运用大数据为客户推荐商品信息,阿里用大数据成立了小微金融服务集团,而谷歌更是计划用大数据接管世界??当下,很多行业都开始增加对大数据的需求。大数据时代不仅处理着海量的数据,同时也加工、传播、分享它们。不知不觉中,数据可视化已经遍布我们生活的每一个角落,毕竟普通用户往往更关心结果的展示。伴随去年底网络地图采用LBS定位春运的可视化大数据,就引起了学界对新闻创新和大数据可视化的热议。


一、技术价值

大数据,根本上与数学、统计学、计算机学、数据学等基本理论知识无法分割,技术水平突飞猛进给数字领域带来最直接的跃进。

App研发应用、数据库编写应用等促进人类社会技术进步的价值都来源于大数据的发明和运营。

大数据不仅创造了新的计算方式、技术处理方式,更加为其他技术的研发、应用和落地提供基础,例如人工智能等。

大数据中客户与企业进行交易的数据,是大数据技术价值的核心映射。客户的交易行为通过企业内部系统留存,基本以“事后”数据为主。

交易数据是推进企业数据驱动业务,与客户联系沟通、获得有效和分析数据的初级门槛,无论大数据获取能力如何发展,直接的交易信息永远都是第一有效和值得关注的。

淘宝的交易分析报告中提到,大额买单后的重购次单和同店重购次单比例分别为25.0%和16.8%,要明显高于普通买单的18.8%和10.7%,则表示在首次买单获取了对卖家服务和商品质量的信任后,次单完全存在放大金额的可能,并且比普通买单的可能要高得多。

由此引导卖家增进服务、坚守质量,并适时推出捆绑推荐,以求同类商品同店大额下单的几率。

只有有了大数据的处理技术,交易行为才能够得到记录分析,企业的大数据技术研发、应用和落地才能拥有基础,以开发更新更适合时代的企业产业。

目前有很多传统企业盲目行走大数据的道路,但其实大数据技术能力并没有建立起来,真正获得了有效数据并得以分析利用的就很少,很多该做的“埋点”没有做,数据的统计也缺乏技术支撑。

这时大数据的技术价值就会显得尤为重要,且是所有价值的基础,一梁塌,全屋倒。

无法自主革新的企业会求助一些以提供大数据服务为产品的新型公司,也就催生了各种大数据公司雨后春笋般的出现,至于这些公司如何为传统转型服务在后面会提到。

二、商业价值

在实际的升级运行中,习惯于传统经营的企业也许经常会为这样几个基础的问题感到困惑:如何提升运营现状?目标客群是谁?有哪些特点?与竞品相比竞争优势在哪?现有经营问题又是什么?

而这些看似简单的问题背后却隐藏着海量数据的分析挖掘:客流数据、经营数据、以往活动相关数据、场内店铺信息、竞品数据,类此种种的深入透析才能帮助企业画像潜客、分析经营、建立会员体系、策划活动执行。

单就运营而论,数据作为一种度量方式,能够真实的反映运营状况,帮助企业进一步了解产品、了解用户、了解渠道进而优化运营策略。

❺ 大数据时代下如何利用小数据创造大价值

“所谓‘小数据’,并不是因为数据量小,而是通过海量数据分析找出真正能帮助用户做决专策的客观依据,让属其真正实现商业智能。”日前,在线业务优化产品与服务提供商国双科技揭幕成立“国双数据中心”,该公司高级副总裁续扬向记者表示,数据对企业决策运营越来越重要,大数据时代来临,企业最终需要的数据不是单纯意义上的大数据,而是通过海量数据挖掘用户特征获取的有价值的“小数据”,进而使企业获取有价值的用户信息,科学地分析用户行为,帮助企业明确品牌定位、优化营销策略。

“小数据”是价值所在

“如今数据呈爆发式增长,已进入数据‘狂潮’时代,过去3年的数据量超过此前400年的数据总量。但是,高容量的数据要能够具体应用在各个行业才能算是有价值。”国双科技首席执行官祁国晟认为,大数据具有高容量、多元化、持续性和高价值4个显著特征。目前,各行各业的数据量正在迅速增长,使用传统的数据库工具已经无法处理这些数据。在硬件发展有限的条件下,通过软件技术的提升来处理不断增长的数据量,对数据利用率的提升以及各行业的发展起着重要的推动作用。

❻ 大数据的价值是什么

大数据对企业产生的一个重要价值就是分析数据的质量,此外,企业内部是否会形成一个个孤立的数据孤岛,数据是否会成就企业内某些人或团队新的权力,导致数据不能得到实时有效地分享,这些都会是阻碍大数据在企业中有效应用的因素。

❼ 如何利用大数据来创造价值

深圳远标为你解答
大数据如何创造价值
这里列举5个大数据广泛适用,能创造质变性的价值并影响机构的设计、组织和管理的方面。
首先,大数据能提高透明度。仅仅让相关的利益共享者尽可能简单及时地使用大数据就可以创造极大的价值。例如在公共行业,让原本孤立的部门间轻易地共享数据,就能明显减少搜索和处理时间。在制造业中,整合研发、工程和生产单位数据以实现并行工程,就能显著缩短上实时间并提高质量。
其次,让发现需求、寻求变化和提高性能的实验成为可能。当组织机构创建和储存更多数字形式的业务数据时,他们可以收集更多准确和细节的性能参数(实时或近乎实时),从产品库存到人员病假等任何事物。
再次能针对细分人口采取定制行动。大数据允许组织机构高度细分市场,专门定制产品和提供精准服务来满足各种需求。这种方式在市场营销和风险管理领域众所周知,但在其他行业可能是革命性的——比如在形成一种同等对待所有群众的道德观的公共行业。然而即使是已经使用市场细分多年的消费品和服务公司,也开始部署复杂的大数据技术来瞄准促销和广告推广
还能用自动化算法取代或支持人类决策。复杂而巧妙的分析可以大幅度改善决策、降低风险和发觉有价值的观点。对组织来说,像这样的分析应用,从税务机构能够使用自动化风险引擎标记需进一步检查的候选人,跨越到零售商可以利用算法优化类似于自动库存微调和专柜店与在线销售实时价格响应的决策过程。在某些情况下,决策不一定是自动的,但通过使用大数据技术和科技,而非小样本的个人处理和理解电子表格来分析海量、完整的数据会增强决策。决策也许会变得不同,但一些组织已经着手通过分析来自顾客、员工,甚至嵌入在产品内的传感器中的完整数据来决策。
最后,大数据有助于革新商业模式、产品和服务。大数据能够让公司创造新产品和服务,强化现存功能,并创建全新的商业模式。制造业正在运用来自实际产品使用的数据,来改善下一代产品的发展并建立创新型售后服务。从导航到基于人们驾驶汽车的位置和方式的财险定价,实时定位数据的出现已经创造了一个基于定位服务的全新篇章。

❽ 大数据如何给企业创造实际价值

第一,通过大数据分析,各行各业都能更快地对变革进行跟踪,响应全球专经济快速的变化。属
第二,在全球金融经济危机的状态下,通过数据分析,能够更好地理解整个经济危机行为的演变。
第三,能够更好地满足大众和企业服务的需求,而且可以预测市场的变化。
而从大数据利用的方式上,也可产生几个方面的价值。
首先,大数据的价值密度较低,现在可利用和分析的数据只是冰山一角,数据里的价值远没有被发掘出来,所以要利用分析技术去发现它们的潜在价值。
其次,要实现大数据整合创新的价值,通过不同渠道的聚集整合,创造新的数据价值。

❾ 大数据可以通过哪些方式为企业创造价值

其实现有模式的大数据不可能给企业带来多少价值,其实大数据就是窃取死人信息,这个东西按照现在的算法有不准确性。好比一个人举例子,怎么确定一只猫,如果是以前我们是按简化模型来确定的,现在不需要模型而是把所有的猫一只不落的存入数据库,而世界这么大,其实这种算法在现有模式下还行,如果以后空间发展了呢?还有就是你的消费欲望可能是随时变化的,没有定性的,因为人是会随时变化的,一个人活到现在的算法不能推测你以后的算法。所以大数据如果以现有的算法是不可信的。算法必须创新。

❿ 大数据产生价值决定未来

大数据产生价值决定未来
随着大数据应用的逐渐深入,大数据蕴含的巨大经济价值也被企业看重,成为企业青睐的对象,大数据的价值决定大数据的未来发展,而大数据的未来发展也有赖于大数据价值的凸显和应用的不断深入,透视当前大数据应用现状可以看出大数据未来十分可观。
自大数据概念横空出世以来,就成为业界广泛关注的焦点,而大数据概念的出现还要赖于短短几年出现的海量数据。据统计,互联网上的数据每两年翻一番,而目前世界上90%以上的数据都是最近几年才产生的。当然,海量数据仅仅是“大数据”概念的一部分,只有具备4个“V”的特征,大数据的定义才算完整,而价值恰恰是决定大数据未来走向的关键。
大数据的发展需要三个必要条件:数据源、数据交易、数据产生价值的过程。近年来,社交网络的兴起、物联网的发展和移动互联网的普及,诞生了大量有价值的数据源,奠定了大数据发展的基础。大数据时代到来的重要标志,则是大批专业级“数据买卖商”的出现,以及围绕数据交易形成的,贯穿于收集、整理、分析、应用整个流程的产业链条。大数据发展的核心,则是使用户从海量的非结构化数据和半结构化数据中获得了新的价值,数据价值是带动数据交易的原动力。
大数据技术的发展促进了云计算的落地,云计算的部署完成又反过来加大了市场对数据创造价值的期待。大数据概念提出之后,市场终于看到了云计算的获利方向:各地的一级系统集成商与当地政府合作,建云数据中心;各大行业巨头在搭建各自行业的云平台;IT巨头想尽办法申请中国的公有云牌照。大数据促成了云计算从概念到落地。借助于智慧城市概念的普及,云计算基础设施已基本准备就绪,一方面完成了大数据应用的硬件基础;另一方面迫于回收云计算投资的压力,市场急需应用部署,大数据恰如雪中送炭,被市场寄予厚望。
随着云计算、大数据技术和相关商业环境的不断成熟,越来越多的“软件开发者”正在利用跨行业的大数据平台,打造创新价值的大数据应用,而且这一门槛正在不断降低。因为首先,数据拥有者能够以微乎其微的成本获取额外的收入,提高利润水平;其次,大数据设备厂商需要应用来吸引消费者购买设备,发展合作共赢的伙伴关系势必比单纯销售设备要有利可图,一些具有远见的厂商已经开始通过提供资金、技术支持、入股等方式来扶持这些“软件开发者”;第三,行业细分市场的数据分析应用需求在不断加大,对于整个大数据产业链来说,创新型的行业数据应用开发者必将是未来整个大数据产业链中最为活跃的部分。
未来,有三种企业将在”大数据产业链“中处于重要地位:掌握海量有效数据的企业,有着强大数据分析能力的企业,以及创新的“软件开发者”。