大数据怎么收集

通过数据抓取和数据监测,整合成一个巨大的数据库——产业经济数据监测、预测与政策模拟平台

❷ 说说大数据对我们学习生活的影响

有了大数据,我们可以轻松查阅学习中我们需要的知识,指导我们生活中的困惑。

❸ 同盾科技大数据检测一个人的信用,算是合法么

同盾科技大数据检测一个人的信用,不能说违法。
个人信用就是道德。
对于道德,人人有自持的义务。

❹ 如何理解传统数据与大数据之间的区别

针对大数据带给教育的机遇与挑战,与读者深入探讨和分享大数据与传统数据的区别,及其行业落地的进展情况。

二、大数据时代潜藏的教育危机

“不得不承认,对于学生,我们知道得太少”——这是卡耐基·梅隆大学(Carnegie Mellon University)教育学院研究介绍中的一句自白,也同样是美国十大教育类年会中出镜率最高的核心议题。这种对于学生认识的匮乏,在21世纪之前长达数百甚至上千年的教育史中并没有产生什么消极的效应,但却在信息技术革命后的近十年来成为教育发展的致命痼疾。

“过去,对于学生来说,到学校上学学习知识具有无可辩驳的重要性,而那是因为当时人们能够接触知识的渠道太少,离开学校就无法获取成体系的知识”斯坦福大学教授Arnetha Ball在AERA(美国教育研究会)大会主旨发言中说道,“但是,互联网的普及将学校的地位从神坛上拉了下来。”Ball的担心不无道理。根据Kids Count Census Data Online发布的数据,2012年全美在家上学(Home-Schooling)的5-17岁学生已达到197万人,相对逐年价下降的出生人口,这一人口比重十分可观。

与此同时,应运而生的则是内容越来越精致的网上课堂,而创立于2009年并迅速风靡全球的可汗学院(Khan Academy)正是其中的杰出代表。从知名学府的公开课到可汗学院,这种网络学习模式受到热捧恰恰证明了:人们对于学习的热情并没有过去,但是人们已经极端希望与传统的学院式授课模式告别。一成不变,甚至“目中无人”的传统集体教学模式在适应越来越多元化、也越来越追求个性化的学生群体时显得捉襟见肘。

可汗学院模式不但支持学生自主选择感兴趣的内容,还可以快速跳转到自己适合的难度,从而提高了学习的效率。学习者没有学习的压力,时长、时机、场合、回顾遍数都可以由自己控制。

可以想象,如果可汗学院的模式进一步发展,与计算机自适应(CAT)的评估系统相联系,让使用者可以通过自我评估实现对学习进度的掌握以及学习资料的精准获取,那么它将形成互联网产品的“闭环”,其优势与力量将是颠覆性的。

而如果传统教育的课程模式不革新,课堂形态不脱胎换骨,教师角色与意识不蜕变,那么学校的存在就只有对现代化学习资源匮乏的学生才有意义;而对于能够自主获得更适宜学习资源的学生来说,去学校可能只是为了完成一项社会角色赋予的义务,甚至谈不上必要性,也就更谈不上愉快的体验或兴趣的驱使了。

大数据的研究可以帮助教育研究者重新审视学生的需求,通过高新的技术以及细致的分析找到怎样的课程、课堂、教师是能够吸引学生的。但问题在于,社会发展给予教育研究者的时间窗口并不宽裕,因为有太多人同样在试图通过大数据挖掘设法瓜分学生们有限的精力与注意力。而且从某种程度上,他们做得远比教育研究者更有动力与诚意。

首当其冲的是游戏的设计者——青少年是其主要消费群体。撇开驰名世界的暴雪公司(Blizzard Entertainment),美国艺电公司(Electronic Arts Inc.),日本任天堂公司(Nintendo)等国际巨鳄不谈;即使是国内的盛大网络,第九城市,巨人科技,淘米网络等游戏公司,亦都早已组建了专业实力强劲的“用户体验”研究团队。他们会通过眼动跟踪,心律跟踪,血压跟踪,键盘与鼠标微操作速率等各种微观行为来研究如何让玩家在游戏中投入更多的时间,更加愿意花真实世界的钱来购买虚拟世界的物品。什么时候应该安排敌人出现,敌人应当是什么级别,主人公需要耗费多少精力才能够将其击败,这些变量都得到了严格的设计与控制,原因只有一个——大数据告诉游戏创作者,这样的设计是最能够吸引玩家持续游戏的。

其次是电影视频、青春小说等链式文化产业。为什么在网站上看视频会一个接一个,无法停止,因为它会根据该账号的历史浏览记录推算出其喜欢看什么样的视频,喜欢听什么类型风格的歌,并投其所好;而畅销网络小说看似并没有“营养”,但里面的遣词造句、语段字数,故事起伏设定,甚至主人公性格的类型都是有相关研究进行支持——读者往往并不喜欢结构严密、精心设计的剧情——这就是为什么情节千篇一律的韩剧受人追捧的原因,他们通过收视率的反复研究,挖掘到了观众最需要的那些元素,并且屡试不爽。

此外还有许多更强大的研究者,比如电子商务,总能通过数据找到你可能愿意购买的商品——他们甚至知道买尿片的父亲更愿意买啤酒。

这些领域看似与我们教育者并无特别关联,但是他们与我们最关心的对象——学生却有着千丝万缕的联系。数百年甚至数十年前,学生并不会面对如此多的诱惑,学校在其生活中占据极大比重,对其影响也最为显着,因此教育者对于学生的控制总是有着充分的自信。但是,当不同的社会机构与产品开始争夺学生的注意力时,教育者的自信就只能被认为是一种无法认清形势的傲慢了——因为在这场“学生争夺战”中,传统学校看上去实在缺乏竞争力。

即使教育研究者愿意放下身段,通过大数据的帮助来悉心研究学生的需求与个性。但是人才的匮乏也是非常不利的一点因素——相比于商业环境下对研究实效的追逐,教育研究的缓慢与空洞显得相形见绌。在互联网企业纷纷抛出“首席数据官”的头衔,向各种数据科学狂人抛出橄榄枝,并且在风险投资的鼓舞下,动辄以百万年薪进行延聘时,大数据研究的前沿阵地必然仍是在互联网行业中最轰轰烈烈地开战。

分析形势后的姿态,以及投入的力度与强度,或许是教育领域在进入大数据研究时最先需要充分考虑的两个先决条件。

三、谁在为大数据欢呼:一场关于“人性”研究的启蒙

孜孜不倦地观测、记录、挖掘海量的数据,有朝一日终会推导出或简约或繁复的方程,以此得以在自然科学的历史丰碑上留名——数百年来,这种对数据的崇拜早已成为了物理学家、化学家、生物学家、天文地理学家们的信念。而牛顿,贝叶斯,薛定谔等一代代巨匠的伟业也揭示了数据对于科学发现的无限重要价值。

相形之下,社会科学领域的研究就要惨淡地多——他们同样看重数据,同样追求统计与分析的“程序正义”,同样勤勤恳恳地设计实验与调研,去寻找成千上万的被试,同样像模像样地去嵌套方程……但是几乎很少有研究结果能够得到普遍的承认,不管是社会学、心理学、经济学、管理学还是教育学。

当然,社会科学领域的研究者们遇到的困难是显而易见的:“人性”与“物性”是不同的,物质世界比较稳定,容易寻找规律;而由人组成的社会极其善变,难以总结。从数据的角度来说,人的数据不如物的数据那么可靠:

首先是人不会像物那样忠实地进行回应:谁知道一个人填写的问卷有多少是注意力不集中填错的、语文水平不高理解错的、还是压根没打算讲真话?此外,人与人本身的差距也大于物与物的差距:两个化学组成相同的物质表现出各种性质几乎是完全一样的,但即使是两个基因完全相同的双胞胎也会因为不同的人生经验,而表现出大相径庭的行为特征。

但这些都还并不关键,最最重要的是:人无法被反复研究。人不是牛顿的木块,不是伽利略的铅球,不是巴普洛夫的狼狗,人不会配合一次次从斜坡上被滑下来,一次次从比萨塔顶被扔下来,一次次流着口水干等着送肉来的铃声。而我们知道,在“科学”的三个标准中,首当其冲的就是“可重复验证”。

换句话说,我们可以获得的关于“人性”的数据不够大,不够多,不够随时随地,因此我们无法从数据中窥见人性。2002年诺贝尔经济学奖授予心理学家丹尼尔?卡尼曼(Daniel Kahneman)时,似乎标示着社会科学领域已经接受了这样一种事实:人类的行为是无法寻找规律、无法预测、难以进行科学度量的。社会科学开始怀疑用纯粹理性的方法是否可以解答关于“人性”的种种现象。与此相映成趣的是2012年的美国大选,奥巴马的团队依靠对网络数据的精准筛选捕捉到了大量的“草根”选民,而对于其喜好与需求的分析与把握更是赢得其信任,从而在不被传统民调与历史数据规律看好的情况下一举胜出。这跨越十年的两个标志性事件让人们对于“数据揭示人性”可能性的认识经历了戏剧性的转变。

如今,迅速普及的互联网与移动互联网悄然为记录人的行为数据提供了最为便利、持久的载体。手机,iPad等贴近人的终端无时不刻不在记录关于人的点点滴滴思考、决策与行为。最最重要的是,在这些强大的数据收集终端面前,人们没有掩饰的意图,人们完整地呈现着自己的各种经历,人们不厌其烦一遍又一遍重复着他们不愿在实验情境下表现出来的行为,从而创造着海量的数据——传统数据研究无法做到的事,传统研究范式苦苦纠结的许多难点,都在大数据到来的那一刹那遁于无形。

大数据的到来,让所有社会科学领域能够藉由前沿技术的发展从宏观群体走向微观个体,让跟踪每一个人的数据成为了可能,从而让研究“人性”成为了可能。而对于教育研究者来说,我们比任何时候都更接近发现真正的学生。

❺ 大数据助力教育督导科学化

大数据助力教育督导科学化_时分析师考试

“收集数据,把数据融入易懂的形式中,让数据讲故事,并且把故事讲给别人听。”这描述的是当下一种时髦的职业,大数据工程师。

“大数据”,当下当仁不让的“热词”。随着移动互联网、物联网的蓬勃发展,大数据时代的信息风暴席卷各个行业领域,深刻影响着人们的思维、生活和工作方式。与传统数据相比,大数据具有数据体量巨大、数据类型繁多、处理速度快、数据可重复利用、价值回报高等特点,为我们看待世界提供了一种全新的方法,即各种决策和行为将日益基于数据分析做出,而不是像过去更多凭借经验做出。

大数据的运用,为教育改革和发展,尤其是教育督导的开展,提供了更为科学的依据。

通过运用大数据技术,对海量数据的快速收集与挖掘、及时研判与共享,积累过去、分析现在、预测未来,推动督导决策制定更加科学。通过运用大数据思维,从事件问题的个性中找到共性和关联,透过现象找到问题的症结,有针对性、有重点地开展督导,并通过教育督导各类共享平台、公开系统的建立,推动督导工作开展更加高效。通过运用大数据思维,创新教育督导方式,可改变督导手段单一、督导效率低下、对被督导对象造成不必要的负担等现状,推动督导手段更加丰富。通过教育督导结果公开的常态化,形成倒逼机制,使社会公众对各级政府履行教育职责、学校规范办学和提高教育质量等工作的监督有力有为,推动结果运用更加有效。

以开展义务教育均衡发展督导评估认定为例,通过运用大数据手段,我们对申报县(市、区)的各类报送数据进行对比分析,并运用统计学对学校生均教学及辅助用房面积、仪器设备、师生比等8项指标,科学计算出小学、初中综合差异系数。2014年本科教学质量评估时,利用网络公开资源对大量数据进行搜集、整理和汇总,客观分析全国本科教学质量现状,为有针对性地开展评估工作奠定了基础。

应当注意的是,从大数据到实际应用,其间要经历一系列知识转换、科学分析。因此,如何利用大数据来服务教育督导,将大数据信息转化成工作成果,推进教育督导科学化,依然面临挑战。

充分利用大数据创新教育督导理念与制度,提高督导决策的前瞻性,增强督导机制的科学性是当务之急。大数据背景下,教育督导各项工作变得零散、即时、多元、高效,业务量巨大,如果无视现实情况而只是由决策者凭自己有限的理解、假想、推测“拍脑瓜”决策,或者还是依赖于传统的调研、座谈、听汇报等长周期且受限于行政程序的方式开展督导工作,效率与有效性将受到质疑。因此教育督导必须运用大数据创新工作理念、推动教育督导适应信息时代形势,进一步强化“用数据说话”的思维习惯和工作理念,提高教育督导的前瞻性。同时,要从制度框架方面推动督导大数据平台的建设,建立数据库资源的共享和开放利用机制,打破数字鸿沟、信息孤岛等壁垒,形成各级各类教育、各级教育督导部门都能共享的教育督导大数据中心。

充分利用大数据创新教育督导手段和督导结果使用,推动督导方式的现代化、强化督导问责的精准度,是重中之重。教育督导要大胆运用信息技术创新督导方式方法,推动督导手段多元化、现代化。应不断拓宽督导信息报送渠道,采集更多数量、更多形式、更多角度的督导信息。同时,应充分运用信息技术对各类教育督导报告的项目、结果进行整合分析,形成客观全面、更具说服力的教育督导结果大数据,准确判断各级政府在履行教育职责、各类学校在规范办学行为和提高教育质量方面存在的真实问题,实现有效问责,增强教育督导结果使用的权威性和准确性。

技术的变革,会让原本难以推动的事情变得简单易行,大数据的诞生正是如此。期待在大数据的助力下,未来的教育督导工作更现代、更科学!

以上是小编为大家分享的关于大数据助力教育督导科学化的相关内容,更多信息可以关注环球青藤分享更多干货

❻ 怎样更好地应用大数据

大数据其实在我们现实生活当中占据了不少的地位吧可以通过互联网来应用。

❼ 哪个国家率先发布了公共服务大数据战略

1、服务而不是掌舵。2、提供公共利益和公共服务是政府的主要目的和任务,但不是由政府自己参与生产或垄断公共服务的提供。3、战略性的思考,民主的行为。4、为公民而不是顾客提供公共服务。5、并非简单的责任与义务。6、重视公民,而不仅仅将公民看成是生产力。7、重视公民关系,将公共服务的提供临驾于“企业家关系”之上。

❽ 大数据时代 将会发生哪些变化

大数据在我国已成为一个新兴产业,应用的重点领域集中于金融、通信、零售、医疗、旅游、政府管理等。作为产业,大数据已经形成初步的产业链条,可细分为数据资源型、技术型、应用型三大类别。代表企业有网络、阿里巴巴、腾讯等,同时也诞生了一批创业型公司,如已登陆新三板的迪派无线、多牛传媒等。有了大数据的支持,政府管理工作将会更高效、精准、科学,并能有效约束公职人员、监督公共资源的使用。国务院办公厅2015年7月发布的《关于运用大数据加强对市场主体服务和监管的若干意见》指出,大数据“有利于政府充分获取和运用信息,更加准确地了解市场主体需求,提高服务和监管的针对性、有效性。”
大数据之于经济,成驱动增长新动力
大数据正在创新经济运行模式,将对经济转型升级产生重要意义。
大数据已渗入百姓生活的方方面面,柴米油盐、吃穿住行、学阅娱赏……传统的生活模式正被深刻影响
具体讲大数据对于我们日常的生活非常有意义:一个是现在的汽车拥堵。现在我们拥堵城市超过三百个,全社会问题,非常严重,可以说政府没有一个很 好解决方法。其实我们交通出行过程当中,整个动态交通状况并不是能够很好的及时的反映给每一个驾驶员,导致我们的出行有很多盲目性。大家都使用导航,在我 看来就是告诉你从哪里到这儿怎么走,路上什么问题,拥堵情况怎么样,修路情况怎么样,事故情况怎么样没有告诉你,这是一个死的,没有把交通因素融合进去。 大数据可以把交通数据采集到的信息告诉我们规划未来城市几点到几点的整个通行情况,给出行者提供一个非常好的东西解决我们应用问题。保证我们维修过程当中 遇到问题,包括我们在停车过程中遇到问题等等,围绕我们汽车使用生态环境确确实实大数据给我们提供一个很好的解决方法。 车联网这一个概念引入中国已经有几年。但推广情况不是很理想。随着大家整个行业,特别我们发展趋势认识的提高,我们在做后市场,提供解决方案这样一些企业 会有更多发展机会,不再从事重资产,重投入,资源消耗比较大的产业,更多把我们有效投入集中真正推动社会进步和发展的领域里,会有更广阔天空,可能作为我 们中小企业能够有更多的机会,这是我个人的观点,谢谢。 第二个是大数据时代信息采集、收集和整理过程当中对个人隐私保护。说实话我们做车联网项目时碰到最头疼问题是怎么有效保护我们客户个人信息。作 为一个企业来讲,我没有义务帮助政府做任何事情。当然大数据时代很多数据产生资源,能力,渠道不在我们这些企业手里面,而是在政府资源控制下。我个人认为 大数据时代如何处理好这个问题是大数据这样一种新的商业模式或者说推动经济发展能否成功一个非常重要的基础,就是能够得到全社会,全体公民认同和支持。最 终毫无疑问政府一定要出台一些相关法律有效保护个人隐私权。 这里头也说一点题外话,曾经跟公安部有关朋友坐一起交流,感觉我们现在对公民隐私权保护方面亟待加强,因为我们政府这么多年之后习惯对这些东西不经意,不 在意消费者或者公民的感受。随意采集涉及到个人隐私的东西,采集和发布时对公民没有尊重。我想随着社会发展对民意意识提升方面是不断改善的,这是毫无疑问 大数据时代应该高度重视的一个问题。我个人非常支持创造一个好的环境,在发展同时有效保护好我们公民隐私。我就把这个问题简单说到这里。

❾ 大数据属于政府负有提供义务的公共服务吗

您好,
政府提供的公共服务大致可分为4类:
1、基础性公共服务。人人都可享受的。如:供水、供电、供气、基本交通设施(公路、铁路、机场、公交车等)、基本通讯设施(通讯卫星、有线电视网络、电话网、宽带网等),邮电、气象服务(天气预报、地震预报等)等。
2、社会性公共服务。基本上也是人人可以享受的。如:教育、医疗、科普、普法、卫生、社会保险、环境保护、技能培训等。
3、经济性公共服务。主要为经济发展服务的。如:办政务服务网站(让国民了解办事程序)、招商引资洽谈会、高新技术交易平台、融资担保、中小企业信贷服务等。
4、安全性公共服务。如:军队、警察、消防、国安等。
大数据属于上述的公共服务,政府负有义务提供。
如能进一步提出更加详细的信息,则可提供更为准确的法律意见。