人工智能发展现状和趋势如何

人工智能的发展现状处于成长期,由于相关人才的数量比较少,人工智能的人才市场处于空缺,出现了供不应求的状况。加之国家发布相关政策促进人工智能的发展;一些省份也比较重视人工智能的发展

Ⅱ 人工智能时代的到来,人工智能未来有发展状况吗

随着深度学习技术的成熟,AI人工智能正在逐步从尖端技术慢慢变得普及。AlphaGo和人类的对弈,并不是我们以往所理解的电子游戏,电子游戏的水平永远不会提升,而AlphaGo则具备了人工智能最关键的“深度学习”功能。AlphaGo中有两个深度神经网络,Value Networks(价值网络)和 Policy Networks(策略网络)。其中Value Networks评估棋盘选点位置,Policy Networks选择落子。这些神经网络模型通过一种新的方法训练,结合人类专家比赛中学到的棋谱,以及在自己和自己下棋(Self-Play)中进行强化学习。也就是说,人工智能的存在,能够让AlphaGo的围棋水平在学习中不断上升。
人工智能的技术应用主要是在以下几个方面:
自然语言处理(包括语音和语义识别、自动翻译)、计算机视觉(图像识别)、知识表示、自动推理(包括规划和决策)、机器学习和机器人学。按照技术类别来分,可以分成感知输入和学习与训练两种。计算机通过语音识别、图像识别、读取知识库、人机交互、物理传感等方式,获得音视频的感知输入,然后从大数据中进行学习,得到一个有决策和创造能力的大脑。
从上世纪八九十年代的PC时代,进入到互联网时代后,给我们带来的是信息的爆炸和信息载体的去中心化。而网络信息获取渠道从PC转移到移动端后,万物互联成为趋势,但技术的限制导致移动互联网难以催生出更多的新应用和商业模式。而如今,人工智能已经成为这个时代最激动人心、最值得期待的技术,将成为未来10年乃至更长时间内IT产业发展的焦点。
人工智能概念其实在上世纪80年代就已经炒得火热,但是软硬件两方面的技术局限使其沉迷了很长一段时间。而现在,大规模并行计算、大数据、深度学习算法和人脑芯片这四大催化剂的发展,以及计算成本的降低,使得人工智能技术突飞猛进。

Ⅲ 如何看待人工智能的发展现状和未来可能

展望前沿技术探索,未来三到五年最有可能出现突破的就是半监督的学习方法。现在深度卷积神经网络很好,但是它有缺点,即依赖于带标签的完备大数据,没有大数据喂食就不可能达到人类水平,但是要获得完备的大数据,需要付出的资源代价太大,很多应用场景甚至得不到,比如把全世界的火车照片都搜集起来,这是不可能的事。我们希望能够做一些小数据、小样本的半监督学习,训练数据不大,但是还能够达到人类水平。
我们做过很多实验,人为地去掉一半甚至去掉1/4的标签数据去训练深度卷积神经网络,希望网络能够具有举一反三的能力,通过小样本或小数据的学习同样能够达到人类水平。这方面的研究不管是利用生成式对抗网络,还是与传统统计机器学习方法相结合,或者是与认知计算方法的结合,证明难度都挺大。比如我们看到了土狗的照片,从来没见过藏獒、宠物狗,但通过举一反三就能够识别出来。这靠什么?靠推理。人类不完全是基于特征提取,还靠知识推理获得更强的泛化能力。而现在的深度卷积神经网络是靠多级多层的特征提取,如果特征提取不好,识别结果就不好,就达不到人类水平。总之,特征提取要好就必须要有完备的大数据。但不管怎样,相信具有“特征提取+知识推理”的半监督或者无监督的深度卷积神经网络三到五年会有突破,而且还是基于端到端学习的,其中也会融入先验知识或模型。相对而言,通用人工智能的突破可能需要的时间更长,三到五年能不能突破还是未知,但是意义非常重大。
在半监督、无监督深度学习方法突破之后,很多行业应用包括人工智能场景研发都会快速推进。实际应用时我们一般都通过数据迭代、算法迭代向前推进。从这个角度来说,AlphaGo中体现的深度强化学习代表着更大的希望。因为它也是基于深度卷积神经网络的,包括以前用的13层网络,现在用的40层卷积神经网,替代了以前的浅层全连接网络,带来的性能提升是很显著的。
为什么深度强化学习更有意义?首先它有决策能力,决策属于认知,这已经不仅仅是感知智能了。其次AlphaGo依赖的仅仅是小数据的监督学习。3000万的6-9段人类职业棋手的棋局,对人类来说已经是大数据了,但对围棋本身的搜索空间来讲则是一个小数据。不管柯洁还是聂卫平,都无法记住3000万个棋局,但19x19的棋盘格上,因每个交叉点存在黑子、白子或无子三种情况,其组合数或搜索空间之巨大,超过了全宇宙的粒子数。对具有如此复杂度的棋局变化,人类的3000万个已知棋局真的就是一个小数据,AlphaGo首先通过深度监督学习,学习人类的3000万个棋局作为基础,相当于站在巨人的肩膀上,然后再利用深度强化学习,通过自我对弈、左右互搏搜索更大的棋局空间,是人类3000万棋局之外的棋局空间,这就使AlphaGo 2.0下出了很多我们从未见过的棋谱或者棋局。
总的来说,深度强化学习有两大好处,它寻找最优策略函数,给出的是决策,跟认知联系起来。第二,它不依赖于大数据。这就是前面说的小数据半监督学习方法。因为在认知层面上进行探索,而且不完全依赖于大数据,因此意义重大,魅力无穷。相信深度强化学习非常有潜力继续向前发展,将大大扩展其垂直应用领域。但是它本身并不是一个通用人工智能。AlphaGo只能下围棋不能同时下中国象棋、国际象棋,因此还只是专注于一个“点”上面的,仍属于弱人工智能。
实现通用人工智能,把垂直细分领域变宽或者实现多任务而不是单任务学习,对深度神经网络而言,沿什么样的技术途径往前走现在还未知,但是肯定要与基于学习的符号主义结合起来。通用人工智能现在没有找到很好的线索往前走,原因一是因为神经网络本身是黑箱式的,内部表达不可解析,二是因为传统的卷积神经网络本身不能完成多任务学习。可以考虑跟知识图谱、知识推理等符号主义的方法结合,但必须是在新的起点上,即在已有大数据感知智能的基础上,利用更高粒度的自主学习而非以往的规则设计来进行。另外从神经科学的角度去做也是可能的途径之一。

Ⅳ 人工智能机器人的发展现状及发展趋势

机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。
那么第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。

现在开发的机器人应该是处于第一第二阶段之间。有兴趣的话可以加 网络hi好友来探讨一下~我也比较喜欢研究这方面的技术。

Ⅳ 人工智能到来的时代会是什么样子

人工智能到来的时代,我觉得是什么都不需要人工了,一切都是机械化,每天的活或者购物都离不开人工智能不再需要人为去做这些事情。