大数据工商管理
㈠ 本科是电器自动化专业硕士是大数据专业在职硕士工商管理专业利于就业吗
电气自动化专业与大数据专业还是存在一定衔接性的所以我认为这个大数据专业比工商管理专业更有优势。
㈡ 为什么大数据对企业管理是重要的
企业的大数据管理分为两个方面:
第一是企业自身的数据管理:
例如企业的客户,产品,销售,库存等数据
第二个是企业的外部信息数据:
这方面的数据包括产品服务的评价,情报信息,行业信息的收集等。
㈢ 大数据专业主要学什么课程
大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。
此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。
以中国人民大学为例:
基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。
必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。
选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。
(3)大数据工商管理扩展阅读:
大数据岗位:
1、大数据系统架构师
大数据平台搭建、系统设计、基础设施。
技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。
2、大数据系统分析师
面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。
3、hadoop开发工程师。
解决大数据存储问题。
4、数据分析师
不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
5、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
㈣ 大数据给现今企业管理带来哪些好处
记录——是操作的基础
备份——保证监督的效果
正是由于大数据的回各个流程中所特有的答流程,才能够在企业的经营管理过程中,更为有效的对现有行为进行管理,并且,通过大数据的相关流程,对于企业的经营发展才可以进行有效的指引。
㈤ 大数据背景下的企业管理以及大数据可能存在什么风险
隐私保护
数据库被入侵
数据被非法利用
数据准确性,被反利用
数据越来泛滥,一体化共享后迅速贬值
等等。
㈥ 大数据传统的企业管理存在着哪些问题
大数据时代传统企业管理遇到的问题:
随着信息化程度不断提高,互联网、物联网、云计算和智能手机终端等技术的不断发展,数据的产生、存储、传播和分析等,不论从数量、方式方法上都较以往有了天壤之别,大数据时代给各行各业带来了巨大的冲击,给传统的企业管理带来一系列挑战。
1、企业决策过程
传统企业的经营决策往往更多地依靠企业的管理者,依靠管理者的经验、直觉和魄力,这样的企业在以前可能会发展壮大,但是缺乏对决策管理过程的监控,缺乏对数据的搜集、提取和分析,没有明确数据与决策结果的关联关系。另外,传统企业的数据分散在各个部门,数据的集中度不高,人们对其关注程度也不高。随着大数据时代的到来,传统企业的组织结构和决策过程必将面临前所未有的考验。
2、智能化、信息化程度不够
大数据的“4V”特征在数据存储、传输、分析、处理等方面较以往均有本质变化。数据量几何倍数的增长,对存储技术提出了挑战,需要高速信息传输能力支持,对非结构化的数据、低密度有价值数据的快速分析和处理能力提出更高要求。据统计,企业中85%的数据都属于非结构化、低密度的数据,大多数企业现有的数据处理方法和系统无法将大量的非结构化数据进行处理。另外,随着数据量的快速增长,对数据的存储、传输能力也提出更高的要求,这都将成为企业在大数据时代遇到的难题。
3、信息安全问题
随着大数据的发展,企业的海量数据中不仅包括业务数据、客户数据、公司内部数据,也不乏大量个人信息,数据本身的安全及个人隐私面临着泄露的挑战。大数据环境下通过对用户数据的深度分析,很容易了解用户行为和喜好,严重的将导致企业的商业机密及个人隐私泄露。如何保证商业秘密、个人隐私秘密等安全问题,对企业是一道难题。
4、人力资源匮乏
大数据改变了企业的传统管理思维,大数据时代的到来企业的管理者和员工都需要重新认识数据的重要性,提高相应的素质才能胜任原有的职位。在大数据时代,对数据的处理和分析已经超出了信息化的范畴,超出了市场营销的范畴,超出了运营管理的范畴,需要具有综合能力的人才,需要有相应新的部门来整合数据资源。对大数据的处理需求,必须有专业的数据分析人才运用这些大数据,才能将其转化为经济价值,数据人才必须能够深入了解企业业务与组织,具有统计应用知识、熟悉大数据数据分析工具的运用等,这就要求数据分析人员必须有整合运用3项基本技能的要求,而传统企业这方面人才非常稀少。