大数据时代,如何安全可靠的存储

近日,厦门市大数据安全开放平台上线。这是全国首个点赞“数据安全屋”技术发展政务大数据安全开放利用的平台,也是全国首个致力于构建大数据开放生态协作的平台。

厦门在全国率先引入“数据安全屋”技术,完成数据一切权与运用权分别,做到开放数据“可用不可见”,处置了政府大数据开放“最后一公里”问题,让数据提供方更有安全感,让数据需要方更有获得感。

“以前数据只在政府部门内部共享,往常全副对企业开放。”厦门市工信局总工程师童平平示意,大数据安全开放平台可宽泛利用在金融、安康医疗、家政效劳、智能客服、商业选址、旅游投资、营销设计等泛滥范畴,让政府部门掌握的数据在安全爱护前提下,最大限度造福社会。

据悉,厦门明白提出构建“政产学研用”多方联动、谐和展开的大数据产业生态体系。借助此次大数据安全开放平台构建的生态协作体系,已经吸收了来自全国各地40多家大数据解决、大数据分析、模型算法开发、大数据利用开发企业和机构入驻平台。

⑵ 大数据安全问题有哪些类型

【导读】大数据运用有助于公司改善事务运营并猜测职业趋势。然而,这项技能可能会被歹意利用,如果没有适当的数据安全策略,黑客就有可能对用户隐私造成重大要挟。那么,大数据安全问题有哪些类型呢?

1、散布式体系

大数据解决方案将数据和操作散布在许多体系上,以便更快地进行处理和分析。这种散布式体系能够平衡负载,并避免发生单点故障。然而,这样的体系很简单遭到安全要挟,黑客只需攻击一个点就能够渗透到整个网络。因而,网络犯罪分子能够很简单地获取敏感数据并损坏连网体系。

2、数据拜访

大数据体系需求拜访控制来约束对敏感数据的拜访,否则,任何用户都能够拜访机密数据,有些用户可能将其用于歹意目的。此外,网络犯罪分子能够侵入与大数据体系相连的体系,以盗取敏感数据。因而,运用大数据的公司需求查看并验证每个用户的身份。

3、不正确的数据

网络犯罪分子能够经过操纵存储的数据来影响大数据体系的精确性。为此,网络罪犯分子能够创立虚伪数据,并将这些数据提供给大数据体系,例如,医疗机构能够运用大数据体系来研究患者的病历,而黑客能够修正此数据以生成不正确的诊断成果。这种有缺陷的成果不简单被发现,公司可能会持续运用不精确的数据。此类网络攻击会严重影响数据完整性和大数据体系的性能。

4、侵略隐私权

大数据体系通常包括机密数据,这是许多人十分关怀的问题。这样的大数据隐私要挟现已被全球的专家们评论过了。此外,网络犯罪分子经常攻击大数据体系,以损坏敏感数据。

以上就是小编今天给大家整理分享关于“大数据安全问题有哪些类型?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

⑶ 大数据真的能威胁国家安全吗 近日,一篇题为《警惕阿里巴巴的大数据造成国

这是真的,但也不必恐慌,自从有网络以后,你的身份信息,只要有你买,就能版找到你,这已经权不是什么秘密了,你如果有碰到,一些莫名其妙的电话,打给你,这就是身份已泄露。最早说的是苹果手机里的后台,能查到你去了哪里,在这里停留了好久,都一清二楚,这不是哈爆炸新闻了。个人建议,如果有帮到你,请记得点赞哦,我需要你的一点点鼓励。谢谢。祝生活愉快。

⑷ 大数据存在的安全问题有哪些

【导读】互联网时代,数据已成为公司的重要资产,许多公司会使用大数据等现代技术来收集和处理数据。大数据的应用,有助于公司改善业务运营并预测行业趋势。那么,大数据存在的安全问题有哪些呢?今天就跟随小编一起来了解下吧!

一、分布式系统

大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。

二.数据存取

大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。

三.数据不正确

网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。

四.侵犯隐私

大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。

五、云安全性不足

大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。

以上就是小编今天给大家整理分享关于“大数据存在的安全问题有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

⑸ 大数据时代:数据安全管理是最大风险

大数据时代:数据安全管理是最大风险
大数据时代的来临,对中国来说面临安全管理能力、存储及处理能力、应用能力和人才培养能力等多方面的新挑战。

大数据的安全管理能力挑战。数据安全管理问题,是我国应用大数据面临的最大风险。虽然将海量数据集中存储,方便了数据分析和处理,但由于安全管理不当所造成的大数据丢失和损坏,则将引发毁灭性的灾难。有专家指出:由于新技术的产生和发展,对隐私权的侵犯已经不再需要物理的、强制性的侵入,而是以更加微妙的方式广泛衍生,由此所引发的数据风险和隐私风险,也将更为严重。
当前,我国对大数据的保护能力还十分有限,数据被恶意使用的现象仍然难以掌控。我国个人和企业对于数据资源的保护意识,还比较薄弱。随着电子商务、社交网络、物联网、云计算、以及移动互联网的全面普及,我国数据资源与全球的数据资源一样,正在呈现爆发性、多样性的增长态势。但是,由于对数据保护认识的不足,以及对个人电脑安全防护的不当,个人或企业的隐私数据暴露在互联网上的现象十分普遍。2011年,我国最大程序员网站的600万个人信息和邮箱密码被黑客公开,进而引发了连锁的泄密事件。2013年,中国人寿80万客户的个人保单信息发现被泄露。这些事件都凸显出在大数据时代,信息安全管理所面临的、前所未有的挑战。
大数据的存储及处理能力挑战。当前,我国大数据存储、分析和处理的能力还很薄弱,与大数据相关的技术和工具的运用也相当不成熟,大部分企业仍处于IT产业链的低端。我国在数据库、数据仓库、数据挖掘以及云计算等领域的技术,普遍落后于国外先进水平。
在大数据存储方面,数据的爆炸式增长,数据来源的极其丰富和数据类型的多种多样,使数据存储量更庞大,对数据展现的要求更高。而目前我国传统的数据库,还难以存储如此巨大的数据量。在大数据的分析处理方面,由于针对具体的应用类型,需要采用不同的处理方式,因此必须通过建立高级大数据的分析模型,来实现快速抽取大数据的核心数据、高效分析这些核心数据并从中发现价值,而这些数据分析能力我国还很欠缺。
因此,如何提高我国对大数据资源的存储和整合能力,实现从大数据中发现、挖掘出有价值的信息和知识,是当前我国大数据存储和处理所面临的挑战。
大数据的应用能力挑战。我国拥有庞大的人口资源和大数据应用市场,市场复杂度高且变化多端,使我国成为世界上最复杂的大数据国家。我国互联网用户,通过利用互联网上的海量数据来提升自身的商业价值和科研价值。我国企业用户,也已积累了大量的数据信息资产,如产品数据、运营数据和价值链数据等。随着我国企业信息化系统的深入部署和逐步完善,大数据应用能力所引发的商业模式的改变,将直接影响我国企业的竞争能力。
在政府决策方面,当前我国政府部门的数据规模还很小,多数仍集中在对结构化数据的应用上,而对于非结构化数据的利用则几乎为空白。利用数据分析来支撑政府决策,我国做得还很不够。从认识到“大数据能产生价值”,到实现了“从大数据中找到价值”,再到“有效使用大数据产生的价值”,政府目前也只是刚刚起步。当前,如何收集数据、使用数据、开放数据、管理数据和利用数据来支撑决策,是我国面临的又一新挑战。
大数据的人才培养能力挑战。大数据领域技术人才和商业人才的缺乏,是一个全球性的问题。根据麦肯锡的一项研究显示,仅美国每年就有14万到19万名数据科学家的缺口,预计到2018年将达到44万到49万,而数据科学家则更是严重缺乏。
我国大数据分析专业人才缺口究竟有多大,有专家粗略估算至少需要100万人。当前,具备综合掌控数学、统计学、机器学习等方面知识的复合型人才,同时又可承担数据分析和数据挖掘的数据科学家,在我国尤为奇缺。目前,我国初级的分析人员只能对数据进行简单的报表和进行描述性分析,而随着未来大数据应用的不断增长,我国大数据人才储备不足的问题将更加严重。因此,培养能够解决大数据问题所需的人才,包括培养大数据分析人才和管理人才,是我们需要面对的又一紧迫问题。

⑹ 大数据如何帮助政府实现“精准治理”

大数据如何帮助政府实现“精准治理”

大数据缘何受到如此重视?业内专家曾以“大、智、移、云”形容当前国内快速进入的技术变革期。大数据、智能化、移动互联、云计算成为驱动中国经济社会转型进步的重要力量。而大数据这一几乎横跨所有社会经济领域的技术变革,无疑会给中国带来更多的改变。

大数据如何支撑政府服务能力提升?走在互联网技术创新前沿的BAT(网络、阿里巴巴、腾讯)等大型互联网企业正立足既有资源再创新,推动政务服务便利化。如腾讯与广东省政府达成基于大数据的政务服务体系建设目标。腾讯支持广东省网上办事大厅和政务云平台建设,在广东各地市全面部署微信“城市服务”网络,为交通、公安、民政、住房城乡建设等政府部门提供业务整合、在线办理云平台、大数据支撑等服务。

这仅仅是大数据支撑政府治理能力提升的第一步,更多的对政策走向、决策支撑、精准治理和多方协作的大数据创新仍需持续发力。

大数据撬动社会治理、市场监管创新

“当数据的价值被发现之后,可以提升国家和政府治理能力现代化,深刻影响每个人的生活形态。”龙信数据(北京)有限公司董事长李钰说。

商事制度改革正在为经济社会带来活力。然而,政府管理需要关注的不仅是注册企业数量的增长,民营企业生存状态、活跃度、就业拉动、税收贡献度等情况也应受到关注。

为此,龙信数据与相关部门联合,将企业注册等关键数据分析处理。相关方与龙信组成“企业发展与宏观经济发展关系分析”课题组,汇总政府数据,加之数据挖掘、电话抽样、焦点组访谈等多种方法结合,取得一般量化统计难以完成的数据结论——国内商事制度改革不仅让市场主体数量增加,更让产业结构持续优化,企业社会总成本持续下降等等,其中仅人员成本就下降近40%。

“大数据应用也将社会治理、市场监管转变为实时监测。”李钰举例,工商部门治理“非法集资”一直是高成本任务。一方面,违法企业以各种名目遮掩违法行为;另一方面,注册企业数目快速攀升,数量巨大。大数据破解了这一难题。

“我们汇总分析大量数据,通过指标计算比对、模型筛选,可以在数以百万的企业中让‘高度疑似’的企业呈现。我们最后筛选出1000多户企业,供政府部门进一步检查。”李钰说,这个复杂过程在以往难以想象。

大数据不仅为政府部门的治理节约时间、人力成本,也更新了治理思路和模式。“以前很多违法行为的治理可以说是事后去追究,现在一些监测治理可以让很多行为提前发现、及早治理。”李钰说。

开放、标准、产业、安全:大数据发展关键词

目前,推动政府运用大数据创新支撑治理能力提升,包括数据资源开放、人才培养、数据立法、接口标准、安全机制等问题仍然有待突破。

实际上,《纲要》已明确提出弥补这些“短板”,即“三项主要任务”:首先要加快政府数据开放共享,推动资源整合,提升治理能力;同时要推动产业创新发展,培育新兴业态,助力经济转型;还要强化安全保障,提高管理水平,促进健康发展。开放、标准、产业、安全成为关键词。

多位业内人士接受采访时表示,当前首要工作是推动政府部门数据加速开放共享。

事实上,此前包括北京等地的政府部门数据陆续开放共享,为数据创新迎来利好。北京市科学技术委员会牵头打造“首都科技大数据平台”,整合长期分散于各个政府部门、科研院所、行业部门的科技数据资源,并逐步向社会数据需求方开放,提升科技资源的公共服务能力。

“北京每年有大量的医疗科研、临床数据、交通运转数据、金融行业数据产生,科研院所也有不少技术成果、技术交易数据、新技术新产品等数据。”北京市科学技术委员会主任闫傲霜说,然而,这些政府科技数据资源大多存于不同平台,分割严重,大多处于沉睡状态,缺乏整合开发。

“有些政府部门把数据资源守得紧紧的,舍不得共享。共享机制不顺畅将制约产业发展、数据应用、服务国家战略等。”李钰说,国家需要进一步让政府部门数据开放,让产业与政府数据充分融合。

产业离不了人才,人才是大数据发展的重要支撑。北京大学校长林建华表示,数据科学人才培养成为亟须加强的方面。“大数据能否做成,关键在能不能聚焦人才培养。”

然而,高校和产业界人士普遍认为,当前大数据人才的培养相对滞后。北京航空航天大学软件学院院长孙伟认为,传统IT教育很难将前沿技术和课堂传授知识结合起来,培养出的人才难以与产业接轨。人才培养应更加面向市场需求、技术前沿。

与此同时,大数据产业发展的理念、标准、安全等也应当得到重视。李钰等产业界人士说,当前国内要实现“数数相连”,相关部门仍需要推动标准制定,将数据产业与数据资源有效打通。

法制的跟进也需要得到重视。当前,国内关于政府信息数据的加工、应用、推广等仍处于相对松散、自发状态。业内人士建议,国家需要有明确的法律条文规范大数据的发展,特别需要以法律法规划定大数据开发利用的边界。

以上是小编为大家分享的关于大数据如何帮助政府实现“精准治理”的相关内容,更多信息可以关注环球青藤分享更多干货

⑺ 大数据就意味着更大的安全风险吗

大数据就意味着更大的安全风险吗
现如今,围绕着大数据分析所涉及到的相关隐私问题存在着许多的担忧:企业和各国的政府机构是否有权获得如此广泛的个人和群体信息?同时,对于他们收集和处理这些数据信息是否有相关的法律或政策对其进行指导和约束?这其中一个相当关键但却并不经常被人们讨论和关注的问题是安全性。
企业和政府机构所收集、存储、分析和分发大量数据信息是否正面临着安全风险方面的挑战?如果是的话,他们应该怎么做来减轻这些挑战呢?
大数据不仅仅只是大量的数据
从某种意义上说,当一家企业开始收集和存储大量的数据信息时,其就已然成为了一个相当显眼的黑客攻击目标。但更广泛地说,对那些收集了大量有价值的非结构化数据信息的企业而言,其数据信息可能并不存在任何根本性的新威胁。
罗伯特?麦加维引用Brainloop公司全球营销副总裁David Topping的话说:“ 对于黑客攻击而言,那些PB级存储的大数据信息是安全的,因为这些数据的量对于黑客而言根本就太大了。也许除了那些资金雄厚的赞助商之外,一般的黑客都缺乏相关的分析工具来从如此庞大的数据量中提取有意义的信息。换句话说,企业也和这些黑客一样,面临同样严峻而显著的问题:如何从他们所收集的庞大数据中提取有价值的东西出来。因此,对于个别大型数据存储库而言,考虑增加任何超出其它类型数据库的安全性措施并无太大的实施意义,尤其是考虑到这些黑客相对于各大机构的能力往往是有限的。”
环境和细粒度的安全
但仅仅只是因为这些数据是非结构化的或更难进行筛选分析,并不意味着大数据必然是更安全。如果所有的大数据存储库都是有用的,就不能将所有每一条信息都进行同等的维护。正如InfoWorld的安得烈C.奥利弗指出的那样:“您企业所收集的数据越多,保持这些数据细粒度的任务和挑战也就越艰巨。企业如何才能在不牺牲大数据性能的前提下牢牢把握所有这些数据的所有权,并遵守相关的监管规定呢?这促使企业首先需要选择一款大数据解决方案。”
细粒度的数据安全分区对数据访问进行了分类。例如,企业的某部分员工可能只能够访问非财务方面的数据,而较高级的员工则有权访问更多的信息。此外,某些信息可能由另一个部门所拥有,或者对其的使用会被加以限制。我们面临的挑战是如何良好的对一个有组织且安全的系统进行维护,尽管面临着一定的环境困境。因此当企业在面临着在安全和盈利能力之间进行权衡的问题时,他们可以很容易地进行响应:“是的,我们有标准的网络安全,所以我们的数据是安全的。”
大数据不能被匿名化
您企业所受收集的数据越详细,就越是可能涉及到更多的个体私人信息,因此,对于个人隐私和安全问题的关注度也应提高。有CSO指出:“计算机科学家表示他们可以使用不涉及个人可识别信息的数据来重建相关人员的身份数据。例如,如果一家品牌企业或政府机构获得了覆盖某地区一年的客户GPS记录列表,那么,他们可以用该列表来了解一人或多人的身份信息。”在这种情况下,找到一个人的身份信息是非常简单的。例如,在某个时间段根据GPS进行定位,然后从互联网上搜索与该位置有关用户的姓名。一般情况下,这个过程可能会更复杂一点,但从概念上讲,其是一个很容易解决的简单问题。
尽管企业纷纷试图使大数据匿名化,这些企业最好的方法也只是使这些数据“假名化”——让一些信息是假名的,当然仍还是可与一个真实的身份相联系。这一有限制性的匿名化是大数据危险的一部分:黑客和其他恶意方可能无法完成数据的精细分析,但考虑到这些有限信息种类的丰富性,他们可以收集各种可利用的结论,进行欺诈,偷盗或者更糟的行为。
虽然原始数据需要保护,即使其是非结构化大数据存储库的一部分,但大数据所面临的更大的威胁是企业支付了巨大的成本才从大数据分析中获得的有价值的信息。麦加维再次引用 David Topping的话说:“许多企业浪费了太多的预算以保障大数据存储。而他们真正的风险则在相关数据信息的输出方面。由于企业往往很少监视或保护这些数据,围绕着企业分析得出的洞察输出是如何产生的... 大多数安全专家都认为,企业的雇员往往表现得很无辜,但有的的确是大数据被破坏最常见的罪魁祸首。”
企业需要保护大数据,尽管其涉及到某些原始信息,但我们需要将更多的重点放到通过对原始数据分析所获得的洞察见解方面。特别是,这些见解必须至少被视为比原始数据更为重要。
处理大数据的安全问题
接下来的问题便是如何解决这些企业担忧的安全问题。一种方法是为黑客提供一个有吸引力的假目标,以便使得企业能够学习更安全的研究方法来应对攻击,实施保护措施。这一战略或不甚理想,因为其只能当系统已经有一些漏洞时才能发挥作用。但这些弱点是可能被识别和解决的。
引用Forrester公司研究题为《未来的数据安全和隐私报告:关于大数据的控制》IBM指出,“安全专业人士在网络边缘最好进行控制。然而,如果攻击者穿透你的周边,他们将有充分的和不受限制的机会访问你的数据。” 当然,解决方案就在于为数据提供一个安全层,让简单地访问网络还不足以获得如此大的权限。
加密,特别是当处理大数据分析洞察见解时,是保护一种有效的信息保护方式,但其肯定不是一个新概念。
结论
大数据所涉及的隐私问题的确正在受到广泛关注,特别是在爆出美国国家安全局对主要IT企业进行监控的背景之下。一个与之不同但又密切相关的问题是安全性:特别是,企业应如何保护原始的非结构化数据和从大数据分析中得到的洞察见解。不幸的是,数据完全匿名化是不可能的,因为数据信息需要与个人和用于各种用途相联系(有时与其他私人或公共来源相组合)。虽然黑客可能无法窃取数据执行复杂的分析,但他们往往通过粗略地查看一下就足以收集有价值的信息(如在GPS数据的情况下)。随着企业收集的数据逐渐存储进大型数据仓库,如联邦数据服务中心,大数据安全方面亟待需要更多的审查。

⑻ 什么是大数据信息安全的威胁

在携程信用卡信息泄露、小米社区用户信息泄露、OpenSSL“心脏出血”漏洞等事件中,大量用户信息数据被盗,导致用户网络银行账户发生入侵事件等情况。这些事情发生在个人用户身上。如果类似事件发生在国家财政、政务等相关部门的数据平台系统上,其后果将是不可想象的,对国家网络安全造成的损失将是前所未有的。大数据时代,我国网络安全面临多重安全威胁。


1、大数据信息安全的威胁——网络基础设施和基本的硬件和软件系统由其他人控制


大数据平台依托互联网,为政府、企业、公众提供服务。然而,从基础设施的角度来看,中国互联网已经存在一些不可控的因素。例如,域名解析系统(DNS)是Internet的基础设施之一,使访问Internet变得很容易,而不必记住复杂的IP地址字符串。今年1月,由于DNS根服务器受到攻击,数千万人在数小时内无法访问该网站。根服务器是全球DNS的基础,但全世界有13个根服务器,都是国外的,由美国控制。此外,中国还没有完全实现对大数据平台基础软硬件系统的自主控制。在能源、金融、电信等重要信息系统的核心软硬件实施中,服务器、数据库等相关产品占据主导地位。因此,目前中国的信息流是通过对国外企业产品的计算、传输和存储来实现的。相关设备设置更多“后门”,国内数据安全生命线几乎全部掌握在外国公司手中。2013年棱镜事件的曝光,突显了硬件和软件基础设施对中国数据安全乃至国家安全的重要性。


2、大数据信息安全的威胁——网站和应用程序充斥着漏洞和后门


近年来,由于网站和应用系统的漏洞,由后门引起的重大安全事件频繁发生,以上三起事件都属于这一类。据中国安全公司的网站安全检测服务统计,多达60%的中国网站存在安全漏洞和后门。可以说,网站和应用系统的漏洞是大数据平台面临的最大威胁之一。然而,各种第三方数据库和中间件在中国的各种大数据行业应用中得到了广泛的应用。然而,此类系统的安全状况并不乐观,存在广泛的漏洞。更令人担忧的是,网站的错误修复都不令人满意。


3、大数据信息安全的威胁——除了系统问题之外,网络攻击的手段更加丰富


其中,终端恶意软件和恶意代码是黑客或敌对势力攻击大数据平台、窃取数据的主要手段之一。目前,越来越多的网络攻击来自终端。终端渗透攻击也成为国与国之间网络战的主要手段。例如,著名的针对伊朗核设施的stuxnet病毒,利用Windows操作系统的弱点,渗透到特定终端,渗透到伊朗核工厂的内部网络,摧毁伊朗核设施。此外,针对大数据平台的高级持续威胁(Advanced Persistent Threat, APT)攻击十分常见,可以绕过各种传统的安全检测和保护措施,窃取网络信息系统的核心数据和各种智能。例如,极光袭击谷歌和其他30多家高科技公司就是一个例子。APT攻击结合了社会工程、吊马、脆弱性、深度渗透、潜伏期长、隐蔽性等特点,具有极强的破坏性。它不仅是未来网络战的主要手段,也是对我国网络空间安全危害最大的攻击手段之一。近年来,具有国家和组织背景的APT攻击不断增多,大数据平台无疑将成为APT攻击的主要目标。


大数据信息安全的威胁有哪些?这才是大数据工程师头疼的问题,在携程信用卡信息泄露、小米社区用户信息泄露、OpenSSL“心脏出血”漏洞等事件中,大量用户信息数据被盗,你能处理好吗?如果您还担心自己入门不顺利,可以点击本站的其他文章进行学习。

⑼ 大数据时代下的信息安全政府怎么做

十八届三中全会将完善和发展中国特色社会主义制度,推进国家治理体系和治理能力现代化,作为全面深化改革的总目标。互联网、物联网、大数据、云计算等现代技术正在深度改变人们的生活、工作和思维方式。面对新形势的挑战,国家治理方式也应顺应时代发展,充分利用大数据提高城市治理效率、降低政府运行成本、提升城市治理能力。

“大数据不仅是科学概念,更是一个实实在在的应用技术。”苏州大学教授王宜怀介绍,从政府层面来说,大数据可以将原本分散存储在不同部门、行业、主体的数据作为整体加以利用,实现统一管理,为信息分析、利用、开放提供基础。同时,大数据的信息平台,使数据资料更加全面,政府部门间的数据信息调用将更加方便快捷,可以有效地提高工作效率。

通过数据整合和运用提高管理能力,是目前世界各国的通用做法。在西班牙首都马德里,整合警察、消防、医疗系统,使救援时间大幅度缩短;在新加坡,智能交通综合信息管理平台在预测交通流速和流量方面有高达85%的准确率。

如何保证大数据的安全使用?建议,制定完善的大数据应用规则,划分部门信息使用权限,确保信息在指定部门、指定情况下按照规范流程使用,确保个人信息安全。在此基础上,设立大数据监督部门,依法监督大数据采集、使用,保证数据的真实性和安全性。