1. 大数据处理的过程是怎么样的

数据收集-清洗数据-建模-标签化。兴润达

2. 大数据的处理流程包括了哪些环节

处理大数据的四个环节:

  • 收集:原始数据种类多样,格式、位置、存储、时效性等迥异内。数据收集容从异构数据源中收集数据并转换成相应的格式方便处理。

  • 存储:收集好的数据需要根据成本、格式、查询、业务逻辑等需求,存放在合适的存储中,方便进一步的分析。

  • 变形:原始数据需要变形与增强之后才适合分析,比如网页日志中把IP地址替换成省市、传感器数据的纠错、用户行为统计等。

  • 分析:通过整理好的数据分析what happened、why it happened、what is happening和what will happen,帮助企业决策。

3. 大数据的处理流程包括了哪些环节

处理大数据的四个环节:

  • 收集:原始数据种类多样,格式、位置、存储、回时效性等迥异。数答据收集从异构数据源中收集数据并转换成相应的格式方便处理。

  • 存储:收集好的数据需要根据成本、格式、查询、业务逻辑等需求,存放在合适的存储中,方便进一步的分析。

  • 变形:原始数据需要变形与增强之后才适合分析,比如网页日志中把IP地址替换成省市、传感器数据的纠错、用户行为统计等。

  • 分析:通过整理好的数据分析what happened、why it happened、what is happening和what will happen,帮助企业决策。

4. 大数据的处理流程是

大数据处理流程主要包括数据收集、数据预处理、数据存储、数据处理与分析、数据展示/数据可视化、数据应用等环节,其中数据质量贯穿于整个大数据流程,每一个数据处理环节都会对大数据质量产生影响作用。

5. 大数据分析的流程浅析 大数据整理过程分析

大数据分析的流程浅析:大数据整理过程分析

数据整理是数据分析过程中最重要的环节,在大数据分析过程中也是如此。在小数据时代,数据整理包括数据的清洗、数据转换、归类编码和数字编码等过程,其中数据清洗占据最重要的位置,就是检查数据一致性,处理无效值和缺失值等操作。在大数据时代,这些工作被弱化了,在有些大数据的算法和应用中,基本不再进行数据清洗了,因为大数据的多样化使得其数据。有一定的不精确性。但数据转换和编码过程还是需要的。下面以大数据分析中文本分类的例子,来分析大数据整理的过程。

在本例中,以mahout为大数据分析软件,文本分类算法选用朴素贝叶斯算法(new bayes),分类对象是来自不同类别的新闻数据。

当我们使用网页爬虫,每小时源源不断的从多个不同类别的新闻网站上取得数据时,取得的这些数据都是文本数据,也就是非结构化数据,这些数据是不需要进行数据清洗过程,但它们在进入到mahout实现的朴素贝叶斯算法时,需要进行必要的数据转换。该转换主要分两个步骤:

1.数据系列化

由于取得的大量的文本数据集中,每个新闻占一个文档,共有无数个小的文件,由于Mahout运行在Hadoop的HDFS上,HDFS是为大文件设计的。如果我们把这些无穷多个小文件都拷贝上去,这样是非常不合适。试想:假设对1000万篇新闻进行分类,难道要拷贝1000w个文件么?这样会使HDFS中运行name node节点的终端崩溃掉。

因此,Mahout采用SequenceFile作为其基本的数据交换格式。其思路是:通过调用mahout内置的解析器,扫描所有目录和文件,并把每个文件都转成单行文本,以目录名开头,跟着是文档出现的所有单词,这样就把无穷多个小文件,转换成一个系列化的大文件。然后把这个大文件,再上传到HDFS上,就可以充分发挥HDFS分布式文件系统的优势。当然,这个转换过程由mahout的内置工具完成,而大数据分析师这个时候只需要把所有的新闻按文件夹分好类放置好,同时运行mahout内置的解析器命令就可以了。

2.文本内容向量化

简单地说就是把文本内容中的每个单词(去除一些连接词后)转换成数据,复杂地说就是进行向量空间模型化(VSM)。该过程使每个单词都有一个编号,这个编号是就它在文档向量所拥有的维度。这个工作在mahout中实现时,大数据分析师也只需要执行其中的一个命令,就可以轻松地实现文本内容的向量化。

有了这些被向量化的数据,再通过mahout的朴素贝叶斯算法,我们就可以对计算机训练出一套规则,根据这个规则,机器就可以对后续收集的新闻数据进行自动的分类了。

从上述文本分类的大数据整理过程可以看出,大数据时代的数据整理过程不再强调数据的精确性,而强调的是对非结构化数据的数量化。当然,不同的大数据分析应用使用的算法也不一样,其数据整理过程也不太一样,但从总体上看,大数据分析的数据整理区别于小数据时代的精确性,而变得更粗放一些。

以上是小编为大家分享的关于大数据分析的流程浅析 大数据整理过程分析的相关内容,更多信息可以关注环球青藤分享更多干货

6. 大数据的利用过程是什么

大数据处理:采集、导入/预处理、统计/分析、挖掘

7. 如何进行大数据分析及处理

探码科技大数据分析及处理过程


聚云化雨的处理方式

  • 聚云:探码科技全面覆盖各类数据的处理应用。以数据为原料,通过网络数据采集、生产设备数据采集的方式将各种原始数据凝结成云,为客户打造强大的数据存储库;

  • 化雨:利用模型算法和人工智能等技术对存储的数据进行计算整合让数据与算法产生质变反应化云为雨,让真正有价值的数据流动起来;

  • 开渠引流,润物无声:将落下“雨水”汇合成数据湖泊,对数据进行标注与处理根据行业需求开渠引流,将一条一条的数据支流汇合集成数据应用中,为行业用户带来价值,做到春风化雨,润物无声。

8. 大数据的预处理过程包括

大数据采集过程中通常有一个或多个数据源,这些数据源包括同构或异构的数据库、文件系统、服务接口等,易受到噪声数据、数据值缺失、数据冲突等影响,因此需首先对收集到的大数据集合进行预处理,以保证大数据分析与预测结果的准确性与价值性。

大数据的预处理环节主要包括数据清理、数据集成、数据归约与数据转换等内容,可以大大提高大数据的总体质量,是大数据过程质量的体现。 数据清理技术包括对数据的不一致检测、噪声数据的识别、数据过滤与修正等方面,有利于提高大数据的一致性、准确性、真实性和可用性等方面的质量;

数据集成则是将多个数据源的数据进行集成,从而形成集中、统一的数据库、数据立方体等,这一过程有利于提高大数据的完整性、一致性、安全性和可用性等方面质量;

数据归约是在不损害分析结果准确性的前提下降低数据集规模,使之简化,包括维归约、数据归约、数据抽样等技术,这一过程有利于提高大数据的价值密度,即提高大数据存储的价值性。

数据转换处理包括基于规则或元数据的转换、基于模型与学习的转换等技术,可通过转换实现数据统一,这一过程有利于提高大数据的一致性和可用性。

总之,数据预处理环节有利于提高大数据的一致性、准确性、真实性、可用性、完整性、安全性和价值性等方面质量,而大数据预处理中的相关技术是影响大数据过程质量的关键因素

9. 大数据的分析步骤

大数据的含义 并非仅仅是指数据量非常庞大,同样是指数据的类别多样化,比如图片类信息、音频类信息、视频类信息、文字类信息等,同样被包含在大数据内。所以领域非常广,可以说以前传统意义上的各种信息分析,都包含在大数据分析的含义内。

无论是现在流行的大数据分析还是传统的小数据分析,大致步骤都是一样的:
首先你要确定你的分析目的是什么
其次是根据分析目的确定分析思路,以及分析的内容、分析的方法
第三是根据目的、思路、方法、内容 收集数据信息
第四 是 采用确定的分析方法 进行相应的分析 以实现目的