① 什么是大数据概念股票中国A股有哪些大数据概念股

英国作家菲利普?鲍尔(Philip Ball)在《预知社会:群体行为的内在法则》一书阐述了一种观点,即个体行为是无法预知的,但当个体数量达到一定程度时,群体行为往往会表现出一定规律,通过统计物理和生物化学中的种种自然规律,可大致预知社会群体行为的运行法则。
数年来这个困惑一直存在。不久前,IBM技术创新全球副总裁伯纳德?梅耶森博士(Dr.Bernard S.Meyerson)的一篇演讲令笔者产生了醍醐灌顶之感。
梅耶森博士在演讲中表示,
这是个很诱人的话题。早在原始社会时期,能比常人早知道天气变化规律,用于指导生产劳作,就有可能成为部落巫师甚至是首领。而巫师未必真具有法力,或许只是比常人掌握了更高层次的知识而已,同时利用了这种信息判断能力的不对称。之后算命这个行当经久不息,也大致继承于此。而当代社会热衷的分析预测,不过也是巫师算命的行当罢了。可以说,任何成功的预测,都是基于对大量有效信息的掌握和准确分析。
基于大数据的智慧产业的重要意义在于,可以更准确地把握市场需求和预测社会群体行为,在此基础上优化各个产业企业环节的生产效率,并以此提升整个社会的生产力。
人类从狩猎到耕种,是利用了土地资源升级了社会生产力;进入工业时代,是利用机器解放了人类的双手升级了社会生产力;电子通信和互联网的出现,大大提升了全球资讯的使用效用,并以此进一步提升了社会生产力。在经历了2008年金融危机后,在欧债危机的影响下,下一个产业升级出自于哪里众说纷纭,而智慧产业很可能成为下一个产业革命的关键。
以工业企业为例,对于社会信息的有效掌握和分析,有助于企业准确把握市场下一个热点或趋势,降低创新过程中的失败概率,也有助于提升企业在市场营销和销售过程中的效率,避免泛广告投放的效率低下。反之,作为消费者,也会更有效率地找到自己想要的商品。现在网购平台构建的你可能喜欢的产品功能,就是这种效率提升的初级应用。
大数据产业链有很多环节,未来都可能面临较大的发展机遇。首先,信息数据产生将会是第一个环节。
信息的产生很好理解,比如,现在公众每天使用的互联网和无限通讯,即时通讯、微博、手机电话、短信、彩信甚至是每一个互联网点击(通过点击习惯可以分析经常浏览某类网站,喜欢某类商品,以及上网时间等使用习惯),都是数据的产生。现在数据产生最多的领域是物联网,根据IBM的分析,上网人数和手机人数在过去最多是2-5倍的增长,而物联网上连接设备的数量在过去5年增加了2000倍。上述领域拥有大量的数据,企业可以依靠这些数据,或进行分析自我提升效率,或出售这些数据(当然,前提是不涉及个人私密信息的数据)给专业分析机构。其次,信息数据的大量产生需要存储。
存储设备领域的增长潜力同样不容忽视。虽然存储设备是整个产业链中技术含量最少的,同时发展空间也可能没有其他子行业充满想象力,但却可能是增长最稳定的子行业。再次,信息数据需要采集整理。
这个环节是整个大数据产业链的最末端,也可能是最具技术含量和产业附加值的子行业。任何数据不经过分析这一环节,都无法落实到实际应用。而且,在同样的数据面前,谁分析出的结果最有效,将决定谁才是真正的大数据智能产业领跑者。
因此,挖掘A股上市公司中的
大数据概念股
(在中国大数据成熟之前,相信会有不少个股仅属于概念股)显得至关重要。
在国金证券、中信证券和光大证券等研究机构的报告中,确实有不少上市公司被列入大数据关注标的。这三家机构选出的标的有:
超图软件、科大讯飞、拓尔思、汉得信息、太极股份、用友软件、东方国信、久其软件、广联达、大智慧、四维图新、威创股份、卫士通、天玑科技、远光软件、美亚柏科、恒泰艾普、华胜天成等。
中国大数据时代还刚刚开启,上述这些上市公司中,谁是真正的大数据受益股,谁压根就想不到进入大数据领域,又或者谁真正拥有大数据所需的技术优势,还得是骡子是马拉出来溜溜。
不过,在大数据浪潮下,相信上述上市公司中会有真正的受益者脱颍而出,但究竟是谁这需要投资者密切跟踪和下功夫研究了。

② 股票市场的大数据量化分析是怎么做的

会做的都不会和你说的,简单来说就是收集数据,实现大数据ai

③ 金融行业如何“把握”大数据

在企业信息化建设及互联网行业的发展过程中,数据量的增长已经达到了前所未有的速度。厂商、分析师以及技术专家认为“大数据”(Big Data)时代已经到来,针对大数据的相关技术已经被IT部门提上了议事日程。除了如何存储管理大数据,更为重要的问题是如何利用大数据为企业服务,通过商业智能以及高级分析应用将其价值发挥到最大。 新概念是新技术的催化剂,在大数据领域中,一些新技术包括Hadoop、MapRece都得到了更广泛的应用,Hadoop、MapRece为通用计算与分布式架构架起了一座桥梁,而传统的企业数据仓库技术则遭遇了前所未有的挑战。 数据大集中目前“数据大集中”的发展趋势已在中国金融业获得了广泛的认同,一些大型的证券商和银行已纷纷走上了这条道路。作为数据及业务应用的核心, 数据中心对于用户的重要性就相当于心脏之于人体。目前,越来越多的金融企业已经投入到对资料中心的建设。事实上,对于众多用户而言,确保每周24小时持续运行已经不再是对资料中心的惟一要求了,先进的资料中心解决方案还应在灵活性、可扩展性、安全性、冗余备份、环境控制以及业务延续性管理等方面有着更为出色的表现,而这一出色表现必须建立在“灵活、健康、高性能的综合布线系统”的基础之上。 不同于其他的行业的是,金融行业已经将网络系统作为其生产机器而并非是一般的办公室运作工具,网络的畅通与可靠运行已经成为金融业正常运转的首要条件。日益复杂的应用系统、海量的数据交换以及不断的更新使得数据中心在其网络系统中占据及其重要的位置。安全:金融业永恒的话题信息安全是金融行业永远的话题。如何利用信息技术的优势加强金融机构的内部控制,提高金融监管和服务水平,防范和化解金融风险,促进金融改革和创新,从而推动我国经济社会的发展,是当前我国金融业信息化建设面临的重大问题。金融信息系统外应用系统相互牵连、使用对象多样化、安全风险的多方位、信息可靠性、保密性要求高等特征构成了金融系统的突出特点。 国际金融危机以来,金融系统的风险控制和监管被提到了前所未有的高度。 史立谈道:“金融行业对网络的安全性、稳定性要求很高,系统要能够高速处理数据,还可以提供冗余备份和容错功能,保证系统在任何情况下都能够正常运行,否则就会给用户带来巨大的损失,同时系统需要提供非常好的管理能力和灵活性,以应对复杂的应用。” 当然,大数据在金融行业一切都还处于初级阶段,但是,金融企业每天处理的数据规模依然在保持增长,大数据分析使得商务决策越来越接近原生数据,信息的质量也变得愈加重要。如果同样复杂的分析可以运用到相关安全数据上面,那么大数据甚至可以用来改善信息安全。 大数据应该说是具有相当大的价值,但同时它又存在巨大的安全隐患,金融行业是不能容忍任何安全问题,一旦出现问题,必然会对企业和个人造成巨大的损失。也许当大数据真的能够解决安全以及稳定性的问题时,大数据才能真正融入金融行业当中。

④ 财经或金融领域的大数据处理一天有多少数据量

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),平台有hadoop

⑤ 我是做金融的,想问一下大数据对金融行业有什么价值

当然有数据支持,可以说所有的行业,都能够很大幅度的提高精准率,无论是从成本还是从效果,都是大有裨益的。

要了解大数据优势有哪,对我这个行业有哪些突出性的优势。

谁是准确的目标受众?如何在合适的时间、合适的地点、以合适的方式传达给消费者正确的信息?随着数据搜集、存储、管理、分析、挖掘与应用的技术体系的发展,这些问题的答案已经可以显现于眼前。

怎么获取数据:网民通过C2C的互动,C2B的互动,B2B的互动,实时生产数据。这些数据汇聚在一起,就能够获取到网民当下的情绪、行为、关注点和兴趣点、归属地、移动路径、社会关系链等一系列有价值的信息。原本分散的信息通过分析、挖掘具有了关联性,了解用户真实的态度和需求。

利用数据获客:利用大数据做精准营销的人群定向投放,根据人群的行为轨迹,再结合其他关联数据,如社交属性等数据来对投放人群进行标签化管理。这样才能使得广告投放有千人千面的效果。

对于营销来说,了解用户、分析用户尤为重要,而每年花在数据分析上的人力物力更是数不胜数。对于营销来说,大数据更多的是支持,可以将更多的人力物力节省下来。

做数据精准获客营销,要找对获客系统运营商大数据,需要了解请留言。

⑥ 大数据是什么意思

大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。



(6)证券的大数据扩展阅读:

大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。

⑦ 金融行业中的大数据应用有哪些方面

金融行业会运用到很多大数据,从投资结构上来看,银行将会成为金融类企业中的重要部分,证内券和报表分列容第二和第三位。国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,广大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款等等。我这边常会涉及到的大数据应用工具有finereport报表工具。

⑧ 证券行业大数据可以运用在哪些方面

,证券行业数据是指券商还是股票分析。
如果券商行业的话,主要看经纪业务,以及其占比是否在下降,产品销售业务利润是否在上升。此外,其他业务渠道是否在扩宽发展,比如投行业务。

⑨ 如何用大数据分析金融数据

任何数据分析的前提是首先要理解业务模型,从你的金融数据是怎么产生的,包括哪些指标哪些数据,你的分析是要为什么业务服务的,也就是你的目的。比如你分析金融数据的目的是要找出最有价值的金融产品,还是最有价值的客户,还是寻找最有效的成本节约途径等

在弄清楚你的分析目的,和理解清楚你的业务模式等之后,再考虑你需要采用哪些数据,采用什么方法来进行分析,这才涉及到如何进行具体的分析过程。

从整个大数据分析来看,前期的业务理解和数据整理大概要耗费一大半的精力和时间,弄清楚前期,后期的分析则会很快。

⑩ 大数据交易的3个特征是什么

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的内数据集合,是需容要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),平台有hadoop