大数据综合能力测试
『壹』 想考大数据分析师应该学什么
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则
6.需要有一定的计算机,系统,编程能力。dmer 的熟练使用。
『贰』 大数据分析中,有哪些常见的大数据分析模型
很多朋友还没有接触过大数据分析方案,认为其仅仅算是个愿景而非现实——毕竟能够证明其可行性与实际效果的案例确实相对有限。但可以肯定的是,实时数据流中包含着大量重要价值,足以帮助企业及人员在未来的工作中达成更为理想的结果。那么,那些领域需要实时的数据分析呢?
1、医疗卫生与生命科学
2、保险业
3、电信运营商
4、能源行业
5、电子商务
6、运输行业
7、投机市场
8、执法领域
9、技术领域
常见数据分析模型有哪些呢?
1、行为事件分析:行为事件分析法具有强大的筛选、分组和聚合能力,逻辑清晰且使用简单,已被广泛应用。
2、漏斗分析模型:漏斗分析是一套流程分析,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。
3、留存分析模型留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始化行为的用户中,有多少人会进行后续行为。这是用来衡量产品对用户价值高低的重要方法。
4、分布分析模型分布分析是用户在特定指标下的频次、总额等的归类展现。
5、点击分析模型即应用一种特殊亮度的颜色形式,显示页面或页面组区域中不同元素点点击密度的图标。
6、用户行为路径分析模型用户路径分析,顾名思义,用户在APP或网站中的访问行为路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径的转换数据进行分析。
7、用户分群分析模型用户分群即用户信息标签化,通过用户的历史行为路径、行为特征、偏好等属性,将具有相同属性的用户划分为一个群体,并进行后续分析。
8、属性分析模型根据用户自身属性对用户进行分类与统计分析,比如查看用户数量在注册时间上的变化趋势、省份等分布情况。
模型再多,选择一种适合自己的就行,如何利益最大化才是我们追求的目标
『叁』 数据分析师考试是什么内容
数据分析师考试包含三个等级,如下:CDA LEVEL Ⅰ(业务数据分析师)专CDA LEVEL Ⅱ(属数据建模分析师)CDA LEVEL Ⅱ(大数据分析师)CDA LEVEL Ⅲ(数据分析专家)考试内容Level Ⅰ:客观题(单选+多选)参考书籍:《从零进阶!数据分析师的统计基础》(人大经济论坛 主编 曹正凤 编著) 《如虎添翼!数据处理的SAS EG实现》(人大经济论坛 主编 徐筱刚 编著) 《胸有成竹!数据分析的SAS EG进阶》(人大经济论坛 主编 常国珍 编著)Level Ⅱ:客观+案例分析(选择+案例操作)考试内容由CDA协会按照CDA等级标准大纲要求命题;考试最终成绩分为A,B,C,D不及格四个层次,A,B,C三个层次皆为通过考试并获得认证证书。具体得大纲可以关注经管之家(人大经济论坛)CDA官网
『肆』 注册会计师考试里面的6门过了后,职业能力综合测试是不是必须过了才算全科通过
你过了6们之后,会有一个全科合格证,有这个证不代表你是注册会计师了,你还得考职业综合测试,这个过了之后,你就可以向中注协申请非执业注册会计师了~
『伍』 如何进行大数据分析及处理
探码科技大数据分析及处理过程
聚云化雨的处理方式
聚云:探码科技全面覆盖各类数据的处理应用。以数据为原料,通过网络数据采集、生产设备数据采集的方式将各种原始数据凝结成云,为客户打造强大的数据存储库;
化雨:利用模型算法和人工智能等技术对存储的数据进行计算整合让数据与算法产生质变反应化云为雨,让真正有价值的数据流动起来;
开渠引流,润物无声:将落下“雨水”汇合成数据湖泊,对数据进行标注与处理根据行业需求开渠引流,将一条一条的数据支流汇合集成数据应用中,为行业用户带来价值,做到春风化雨,润物无声。
『陆』 大数据专业主要学什么课程
大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。
此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。
以中国人民大学为例:
基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。
必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。
选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。
(6)大数据综合能力测试扩展阅读:
大数据岗位:
1、大数据系统架构师
大数据平台搭建、系统设计、基础设施。
技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。
2、大数据系统分析师
面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。
技能:人工智能、机器学习、数理统计、矩阵计算、优化方法。
3、hadoop开发工程师。
解决大数据存储问题。
4、数据分析师
不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
5、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
『柒』 大数据与应用单招面试考什么
2017学校单招的考试形式一般为“文化联考+综合素养测试”相结合的考试模式。文化联考包括语数英三门科目;综合素质测试分为上机测试和面试,上机测试在计算机上答题,考核学生人文素养;面试由面试员与考生交流,主要考核语言表达、心理素质、反应能力、知识面、职业倾向等基本职业素质。不过不同学校之间会有些许差别,具体请看各个学校的招生简章。学院根据录取原则预录取,单招拟录取考生名单在学院网站上进行公示并上报省考试院审核~~
『捌』 如何考大数据分析师
大数据分析师报考要求如下:
1、初级数据分析师:
(1)具有大专以上学历,或从事统计工作的人员;
(2)通过初级笔试、上机考试、报告考核,成绩全部合格。
2、中级数据分析师:
(1)具有本科及以上学历,或初级数据分析师证书,或从事相关工作一年以上;
(2)通过中级笔试、上机考试,成绩全部合格;
(3)通过中级实践应用能力考核。
3、高级数据分析师:
(1)研究生以上学历,或从事相关工作五年以上;
(2)获得中级数据分析师证书。
(3)通过高级笔试、报告考核后,获取准高级数据分析师证书;
(4)考生在获得准高级证书后,在专业领域工作五年,并撰写一篇专业数据分析论文,经答辩合格,获取高级数据分析师合格证书。
(8)大数据综合能力测试扩展阅读
技能要求
1、懂业务
从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理
一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
『玖』 学大数据需要什么基础知识和能力
大数据的发展历程总体上可以划分为三个重要阶段,萌芽期、成熟期和大规模应用期,20世纪90年至21世纪初,为萌芽期,随着,一批商业智能工具和知识管理技术的开始和应用,度过了数据萌芽。
21世纪前十年则为成熟期,主要标志为,大数据解决方案逐渐走向成熟,形成了并行计算与分布式系统两大核心技,谷歌的GFS和MapRece等大数据技术受到追捧,Hadoop平台开始大行期道,2010年以后,为大规模应用期,标志为,数据应用渗透各行各业,数据驱动决策,信息社会智能化程度快速提高。
点击链接加入群聊【大数据学习交流群】:互联网科技发展蓬勃兴起,人工智能时代来临,抓住下一个风口。为帮助那些往想互联网方向转行想学习,却因为时间不够,资源不足而放弃的人。我自己整理的一份最新的大数据进阶资料和高级开发教程, 欢迎进阶中和进想深入大数据的小伙伴加入。
数据时代的到来,也推动了数据行业的发展,包括企业使用数据获取价值,促使了大量人员从事于数据的学习,学习大数据需要掌握基础知识,接下从我的角度,为大家做个简要的阐述。
学习大数据需要掌握的知识,初期了解概念,后期就要学习数据技术,主要包括:
1.大数据概念
2.大数据的影响
3.大数据的影响
4.大数据的应用
5.大数据的产业
6.大数据处理架构Hadoop
7.大数据关键技术
8.大数据的计算模式
后三个牵涉的数据技技术,就复杂一点了,可以细说一下:
1.大数据处理架构Hadoop:Hadoop的特性、Hadoop生态系统、Hadoop的安装与使用;
2.大数据关键技术技术:数据采集、数据存储与管理、数据处理与分析、数据隐私与安全;
3.大数据处理计算模式:批处理计算、流计算、图计算、查询分析计算
数据的核心技术就是获取数据价值,获取数据前提是,先要有数据,这就牵涉数据挖掘了。
一、Java语言以java语言为基础掌握面向对象编程思想所涉及的知识,以及该知识在面向对象编程思想中的应用,培养学生设计程序的能力。掌握程度:精通
二、数据结构与算法掌握基于JAVA语言的底层数据结构和算法原理,并且能够自己动手写出来关于集合的各种算法和数据结构,并且了解这些数据结构处理的问题和优缺点。掌握程度:熟练。
三、数据库原理与MYSQL数据库掌握关系型数据库的原理,掌握结构化数据的特性。掌握关系型数据库的范式。通过MYSQL数据库掌握通过SQL语言与MYSQL数据库进行交互。熟练掌握各种复杂SQL语句的编写。掌握程度:熟练。
四、LINUX操作系统全面了解LINUX。详解LINUX下的管理命令、用户管理、网络配置管理等。掌握SHELL脚本编程,能够根据具体业务进行复杂SHELL脚本的编写。掌握程度:精通。
五、Hadoop技术学习Hadoop技术的两个核心:分布式文件系统HDFS和分布式计算框架MapRece。掌握MR的运行过程及相关原理,精通各种业务的MR程序编写。掌握Hadoop的核心源码及实现原理。掌握使用Hadoop进行海量数据的存储、计算与处理。掌握程度:精通。
六、分布式数据库技术:精通分布式数据库HBASE、掌握Mongodb及了解其它分布式数据库技术。精通分布式数据库原理、应用场景、HBASE数据库的设计、操作等,能结合HIVE等工具进行海量数据的存储于检索。掌握程度:精通。
七、数据仓库HIVE精通基于hadoop的数据仓库HIVE。精通HIVESQL的语法,精通使用HIVESQL进行数据操作。内部表、外部表及与传统数据库的区别,掌握HIVE的应用场景及Hive与HBase的结合使用。掌握程度:精通。
八、PYTHON语言精通PYTHON语言基础语法及面向对象。精通PYTHON语言的爬虫、WEB、算法等框架。并根据业务可以基于PYTHON语言开发完成的业务功能和系统。掌握程度:精通。
九、机器学习算法熟练掌握机器学习经典算法,掌握算法的原理,公式,算法的应用场景。熟练掌握使用机器学习算法进行相关数据的分析,保证分析结果的准确性。掌握程度:熟练。
十、Spark高级编程技术掌握Spark的运行原理与架构,熟悉Spark的各种应用场景,掌握基于SparkRDD的各种算子的使用;精通SparkStreaming针对流处理的底层原理,熟练应用SparkSql对各种数据源处理,熟练掌握Spark机器学习算法库。达到能够在掌握Spark的各种组件的基础上,能够构建出大型的离线或实时的业务项目。掌握程度:精通。
十一、真实大数据项目实战通过几个真实的大数据项目把之前学习的知识与大数据技术框架贯穿,学习真实的大数据项目从数据采集、清洗、存储、处理、分析的完整过程,掌握大数据项目开发的设计思想,数据处理技术手段,解决开发过程中遇到的问题和技术难点如何解决。