人工智能贝叶斯网络
Ⅰ 贝叶斯网络主流工具软件
目前国际上存在许多种 BN 处理工具,一般均同时支持多种图模型处理。下面介绍几种比较常见的 BN 工具软件。
( 1) Hugin Expert: 该软件包括一系列产品,自称是基于 BN 的人工智能领域的领航者,既可作为单个工具使用,也可集成到其他产品中使用。目前在软件、医学、工业、军事、警容、信息处理以及农业等多个领域得到了广泛应用。如用应用于 NOKIA 公司的移动网络故障诊断、医学决策支持、隧道施工设计阶段的决策支持、数据挖掘及风险评估等。
( 2) 微软的 BBN( Microsoft Belief Networks) : 该软件采用视窗界面,界面友好且操作简单,并且提供了 API 接口,以供 VB 调用。缺点是用户不能自主选择概率推理算法,且不提供结构学习功能,即不能从数据中学习建立 BN 模型。
( 3) Netica: 该软件是加拿大 Norsys 软件公司开发研制的图模型处理工具。其主要特点是提供了图形化的建模界面及概率参数展示界面,方便直观且易于操作,并且提供了 API接口,供 Java 调用。缺点是用户不能自主选择概率推理算法。
( 4) Ergo: 该软件是由 Noetic 公司开发研制的可视化建模分析软件,它功能单一且应用范围较窄,主要用于专家系统的建立,对节点的个数和状态空间的范围都有一定程度上的限制。
( 5) BNJ: 是由肯尼索州立大学开发的开放源码软件,采用视窗界面,兼容其他 BN 建模软件的文件格式,包括 Netica、Ergo、Hugin Expert、GeNie 等。支持精确推理和近似推理、结构学习和参数学习,并且提供了 API 接口供调用。该软件最大的缺点是可操作性差,且帮助功能相对较弱。
( 6) GeNie 2. 0: 该软件是匹兹堡大学决策系统实验室( Decision Systems Laboratory,U-niversity of Pittsburgh) 开发研制的图模型处理软件。采用了图形化建模界面,界面直观,操作简单,提供多种推理算法,且支持结构学习和参数学习。该实验室还用 VC + + 开发了API 接口 SmileX 和 Smile. net ,以供 VB、VC + + 、Java、C Sharp 等多种语言调用。
上述工具各有特点,本文选用了 GeNie 软件及其提供的 Smile. net 软件包,进行 BN 模型构建、BN 学习及推理等工作。图 2. 1 为 GeNie 2. 0 软件的主界面。
图 2. 1 Genie2. 0 主界面
Ⅱ 动态贝叶斯网络推理学习理论及应用的内容简介
动态贝叶斯网络理论是贝叶斯网络理论的延拓,研究内容涉及推理和学习两大方面,该理论在人工智能、机器学习、自动控制领域得到越来越广泛的应用。本书首先从静态网络的模型表达、推理及学习入手,进而针对动态贝叶斯网络推理算法、平稳系统动态贝叶斯网络结构学习模型设计、非平稳系统动态网络变结构学习模型设计、基于概率模型进化优化动态贝叶斯网络结构寻优算法、进化优化与动态贝叶斯网络混和优化等方面进行了讨论,最终将推理及结构学习理论用于无人机路径规划、自主控制等方面。
Ⅲ 人工智能,机器学习,深度学习,到底有何区别
有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。
今年早些时候,Google DeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machine learning)和深度学习(deep learning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。
今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。
人工神经网络(Artificial Neural Networks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。
例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。
每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。
我们仍以停止(Stop)标志牌为例。将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。
这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。
即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。
不过,还是有一些虔诚的研究团队,以多伦多大学的Geoffrey Hinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。
我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。
只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(Andrew Ng)教授在Google实现了神经网络学习到猫的样子等等。
吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。吴教授为深度学习(deep learning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。
现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。
|深度学习,给人工智能以璀璨的未来
深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。
人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。你的C-3PO我拿走了,你有你的终结者就好了。
Ⅳ FLDA 是人工智能算法么全名中英文是啥啊
应该不是。
人工智能之机器学习体系汇总
监督学习 Supervised learning
Fisher的线性判别 Fisher’s linear discriminant
线性回归 Linear regression
Logistic回归 Logistic regression
多项Logistic回归 Multinomial logistic regression
朴素贝叶斯分类器 Naive Bayes classifier
感知 Perceptron
支持向量机 Support vector machine
分类和回归树(CART) Classification and regression tree (CART)
迭代Dichotomiser 3(ID3) Iterative Dichotomiser 3(ID3)
C4.5算法 C4.5 algorithm
C5.0算法 C5.0 algorithm
卡方自动交互检测(CHAID) Chi-squared Automatic Interaction Detection(CHAID)
决策残端 Decision stump
ID3算法 ID3 algorithm
随机森林 Random forest
SLIQ
朴素贝叶斯 Naive Bayes
高斯贝叶斯 Gaussian Naive Bayes
多项朴素贝叶斯 Multinomial Naive Bayes
平均一依赖性评估(AODE) Averaged One-Dependence Estimators(AODE)
贝叶斯信念网络(BNN) Bayesian Belief Network(BBN)
贝叶斯网络(BN) Bayesian Network(BN)
自动编码器 Autoencoder
反向传播 Backpropagation
玻尔兹曼机 Boltzmann machine
卷积神经网络 Convolutional neural network
Hopfield网络 Hopfield network
多层感知器 Multilayer perceptron
径向基函数网络(RBFN) Radial basis function network(RBFN)
受限玻尔兹曼机 Restricted Boltzmann machine
回归神经网络(RNN) Recurrent neural network(RNN)
自组织映射(SOM) Self-organizing map(SOM)
尖峰神经网络 Spiking neural network
人工神经网络 Artificial neural network
贝叶斯 Bayesian
决策树 Decision Tree
线性分类 Linear classifier
无监督学习 Unsupervised learning
k-最近邻算法(K-NN) k-nearest neighbors classification(K-NN)
局部异常因子 Local outlier factor
BIRCH
DBSCAN
期望最大化(EM) Expectation-maximization(EM)
模糊聚类 Fuzzy clustering
K-means算法 K-means algorithm
k-均值聚类 K-means clustering
k-位数 K-medians
平均移 Mean-shift
OPTICS算法 OPTICS algorithm
单连锁聚类 Single-linkage clustering
概念聚类 Conceptual clustering
先验算法 Apriori algorithm
Eclat算法 Eclat algorithm
FP-growth算法 FP-growth algorithm
对抗生成网络
前馈神经网络 Feedforward neurral network
逻辑学习机 Logic learning machine
自组织映射 Self-organizing map
极端学习机 Extreme learning machine
人工神经网络 Artificial neural network
关联规则学习 Association rule learning
分层聚类 Hierarchical clustering
聚类分析 Cluster analysis
异常检测 Anomaly detection
半监督学习 Semi-supervised learning
生成模型 Generative models
低密度分离 Low-density separation
基于图形的方法 Graph-based methods
联合训练 Co-training
强化学习 Reinforcement learning
时间差分学习 Temporal difference learning
Q学习 Q-learning
学习自动 Learning Automata
状态-行动-回馈-状态-行动(SARSA) State-Action-Reward-State-Action(SARSA)
深度学习 Deep learning
深度信念网络 Deep belief machines
深度卷积神经网络 Deep Convolutional neural networks
深度递归神经网络 Deep Recurrent neural networks
分层时间记忆 Hierarchical temporal memory
深度玻尔兹曼机(DBM) Deep Boltzmann Machine(DBM)
堆叠自动编码器 Stacked Boltzmann Machine
生成式对抗网络 Generative adversarial networks
迁移学习 Transfer learning
传递式迁移学习 Transitive Transfer Learning
其他
主成分分析(PCA) Principal component analysis(PCA)
主成分回归(PCR) Principal component regression(PCR)
因子分析 Factor analysis
Bootstrap aggregating (Bagging)
AdaBoost
梯度提升机(GBM) Gradient boosting machine(GBM)
梯度提升决策树(GBRT) Gradient boosted decision tree(GBRT)
集成学习算法
降维
Ⅳ 深度解析人工智能,机器学习和深度学习的区别
有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。
今年早些时候,Google DeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machine learning)和深度学习(deep learning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。
今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。
人工智能、机器学习和深度学习之间的区别和联系
如上图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。
五十年代,人工智能曾一度被极为看好。之后,人工智能的一些较小的子集发展了起来。先是机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大的影响。
| 从概念的提出到走向繁荣
1956年,几个计算机科学家相聚在达特茅斯会议(Dartmouth Conferences),提出了“人工智能”的概念。其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言;或者被当成技术疯子的狂想扔到垃圾堆里。坦白说,直到2012年之前,这两种声音还在同时存在。
过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。
让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点苗头,发展到能够支撑那些每天被数亿用户使用的应用的。
| 人工智能(Artificial Intelligence)——为机器赋予人的智能
人工智能、机器学习和深度学习之间的区别和联系
早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。这就是我们现在所说的“强人工智能”(General AI)。这个无所不能的机器,它有着我们所有的感知(甚至比人更多),我们所有的理性,可以像我们一样思考。
人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能现在还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。
我们目前能实现的,一般被称为“弱人工智能”(Narrow AI)。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者Facebook的人脸识别。
这些是弱人工智能在实践中的例子。这些技术实现的是人类智能的一些具体的局部。但它们是如何实现的?这种智能是从何而来?这就带我们来到同心圆的里面一层,机器学习。
| 机器学习—— 一种实现人工智能的方法
人工智能、机器学习和深度学习之间的区别和联系
机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。
机器学习直接来源于早期的人工智能领域。传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。
机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。
这个结果还算不错,但并不是那种能让人为之一振的成功。特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么前一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。
随着时间的推进,学习算法的发展改变了一切。
| 深度学习——一种实现机器学习的技术
人工智能、机器学习和深度学习之间的区别和联系
人工神经网络(Artificial Neural Networks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。
例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。
每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。
我们仍以停止(Stop)标志牌为例。将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。
这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。
即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。
不过,还是有一些虔诚的研究团队,以多伦多大学的Geoffrey Hinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。
我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。
只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(Andrew Ng)教授在Google实现了神经网络学习到猫的样子等等。
吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。吴教授为深度学习(deep learning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。
现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。
| 深度学习,给人工智能以璀璨的未来
深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。
人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。你的C-3PO我拿走了,你有你的终结者就好了。
Ⅵ 贝叶斯网络的特性
1、贝叶斯网络本身是一种不定性因果关联模型。贝叶斯网络与其他决策模型不同,它本身是将多元知识图解可视化的一种概率知识表达与推理模型,更为贴切地蕴含了网络节点变量之间的因果关系及条件相关关系。
2、贝叶斯网络具有强大的不确定性问题处理能力。贝叶斯网络用条件概率表达各个信息要素之间的相关关系,能在有限的、不完整的、不确定的信息条件下进行学习和推理。
3、贝叶斯网络能有效地进行多源信息表达与融合。贝叶斯网络可将故障诊断与维修决策相关的各种信息纳入网络结构中,按节点的方式统一进行处理,能有效地按信息的相关关系进行融合。
对于贝叶斯网络推理研究中提出了多种近似推理算法,主要分为两大类:基于仿真方法和基于搜索的方法。在故障诊断领域里就我们水电仿真而言,往往故障概率很小,所以一般采用搜索推理算法较适合。就一个实例而言,首先要分析使用哪种算法模型:
a.)如果该实例节点信度网络是简单的有向图结构,它的节点数目少的情况下,采用贝叶斯网络的精确推理,它包含多树传播算法,团树传播算法,图约减算法,针对实例事件进行选择恰当的算法;
b.)如果是该实例所画出节点图形结构复杂且节点数目多,我们可采用近似推理算法去研究,具体实施起来最好能把复杂庞大的网络进行化简,然后在与精确推理相结合来考虑。
在日常生活中,人们往往进行常识推理,而这种推理通常是不准确的。例如,你看见一个头发潮湿的人走进来,你认为外面下雨了,那你也许错了;如果你在公园里看到一男一女带着一个小孩,你认为他们是一家人,你可能也犯了错误。在工程中,我们也同样需要进行科学合理的推理。但是,工程实际中的问题一般都比较复杂,而且存在着许多不确定性因素。这就给准确推理带来了很大的困难。很早以前,不确定性推理就是人工智能的一个重要研究领域。尽管许多人工智能领域的研究人员引入其它非概率原理,但是他们也认为在常识推理的基础上构建和使用概率方法也是可能的。为了提高推理的准确性,人们引入了概率理论。最早由Judea Pearl于1988年提出的贝叶斯网络(Bayesian Network)实质上就是一种基于概率的不确定性推理网络。它是用来表示变量集合连接概率的图形模型,提供了一种表示因果信息的方法。当时主要用于处理人工智能中的不确定性信息。随后它逐步成为了处理不确定性信息技术的主流,并且在计算机智能科学、工业控制、医疗诊断等领域的许多智能化系统中得到了重要的应用。
贝叶斯理论是处理不确定性信息的重要工具。作为一种基于概率的不确定性推理方法,贝叶斯网络在处理不确定信息的智能化系统中已得到了重要的应用,已成功地用于医疗诊断、统计决策、专家系统、学习预测等领域。这些成功的应用,充分体现了贝叶斯网络技术是一种强有力的不确定性推理方法。
Ⅶ 人工智能,机器学习与深度学习,到底是什么关系
一、人工智能
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括语音识别、图像识别、机器人、自然语言处理、智能搜索和专家系统等。
人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也有可能超过人的智能。
二、数据挖掘
数据挖掘(Data Mining),顾名思义就是从海量数据中“挖掘”隐藏信息,按照教科书的说法,这里的数据是“大量的、不完全的、有噪声的、模糊的、随机的实际应用数据”,信息指的是“隐含的、规律性的、人们事先未知的、但又是潜在有用的并且最终可理解的信息和知识”。在商业环境中,企业希望让存放在数据库中的数据能“说话”,支持决策。所以,数据挖掘更偏向应用。
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
三、机器学习
机器学习(Machine Learning)是指用某些算法指导计算机利用已知数据得出适当的模型,并利用此模型对新的情境给出判断的过程。
机器学习的思想并不复杂,它仅仅是对人类生活中学习过程的一个模拟。而在这整个过程中,最关键的是数据。
任何通过数据训练的学习算法的相关研究都属于机器学习,包括很多已经发展多年的技术,比如线性回归(Linear Regression)、K均值(K-means,基于原型的目标函数聚类方法)、决策树(Decision Trees,运用概率分析的一种图解法)、随机森林(Random Forest,运用概率分析的一种图解法)、PCA(Principal Component Analysis,主成分分析)、SVM(Support Vector Machine,支持向量机)以及ANN(Artificial Neural Networks,人工神经网络)。
四、深度学习
深度学习(Deep Learning)的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
五、人工智能与机器学习、深度学习的关系
严格意义上说,人工智能和机器学习没有直接关系,只不过目前机器学习的方法被大量的应用于解决人工智能的问题而已。目前机器学习是人工智能的一种实现方式,也是最重要的实现方式。
早期的机器学习实际上是属于统计学,而非计算机科学的;而二十世纪九十年代之前的经典人工智能跟机器学习也没有关系。所以今天的AI和ML有很大的重叠,但并没有严格的从属关系。
不过如果仅就计算机系内部来说,ML是属于AI的。AI今天已经变成了一个很泛泛的学科了。
深度学习是机器学习现在比较火的一个方向,其本身是神经网络算法的衍生,在图像、语音等富媒体的分类和识别上取得了非常好的效果。
所以,如果把人工智能与机器学习当成两个学科来看,三者关系如下图所示:
机器学习是数据挖掘的一种重要方法,但机器学习是另一门学科,并不从属于数据挖掘,二者相辅相成。
Ⅷ 人工智能,机器学习和深度学习的区别是什么
这三个概念比较抽象,现在来用通俗的方式解释一下。
通过一个经典的例子来解释人工智能、机器学习和深度学习之间的区别:比较苹果和橙子。
1、人工智能
从广义上讲,人工智能描述一种机器与周围世界交互的各种方式。通过先进的、像人类一样的智能——软件和硬件结合的结果——一台人工智能机器或设备就可以模仿人类的行为或像人一样执行任务。
2、机器学习
机器学习是人工智能的一种途径或子集,它强调“学习”而不是计算机程序。一台机器使用复杂的算法来分析大量的数据,识别数据中的模式,并做出一个预测——不需要人在机器的软件中编写特定的指令。在错误地将奶油泡芙当成橙子之后,系统的模式识别会随着时间的推移而不断改进,因为它会像人一样从错误中吸取教训并纠正自己。
通过机器学习,一个系统可以从自身的错误中学习来提高它的模式识别能力。
3、深度学习
深度学习是机器学习的一个子集,推动计算机智能取得长足进步。它用大量的数据和计算能力来模拟深度神经网络。从本质上说,这些网络模仿人类大脑的连通性,对数据集进行分类,并发现它们之间的相关性。如果有新学习的知识(无需人工干预),机器就可以将其见解应用于其他数据集。机器处理的数据越多,它的预测就越准确。
例如,一台深度学习的设备可以检查大数据——比如通过水果的颜色、形状、大小、成熟时间和产地——来准确判断一个苹果是不是青苹果,一个橙子是不是血橙。
Ⅸ 一篇文章搞懂人工智能,机器学习和深度学习之间的区别
为了搞清三者关系,我们来看一张图:
如图所示:人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习。
从低潮到繁荣
自从 1956 年计算机科学家们在达特茅斯会议(Dartmouth Conferences)上确认人工智能这个术语以来,人们就不乏关于人工智能奇思妙想,研究人员也在不遗余力地研究。在此后的几十年间,人工智能先是被捧为人类文明光明未来的钥匙,后又被当作过于自大的异想天开而抛弃。
但是在过去几年中,人工智能出现了爆炸式的发展,尤其是 2015 年之后。大部分原因,要归功于图形处理器(GPU)的广泛应用,使得并行处理更快、更便宜、更强大。另外,人工智能的发展还得益于几乎无限的存储空间和海量数据的出现(大数据运动):图像、文本、交易数据、地图数据,应有尽有。
下面我们从发展的历程中来一一展开对人工智能、机器学习和深度学习的深度学习。
人工智能人工智能先驱们在达特茅斯开会时,心中的梦想是希望通过当时新兴的计算机,打造拥有相当于人类智能的复杂机器。这就是我们所说的“通用人工智能”(General AI)概念,拥有人类五感(甚至更多)、推理能力以及人类思维方式的神奇机器。在电影中我们已经看过无数这样的机器人,对人类友好的 C-3PO,以及人类的敌人终结者。通用人工智能机器至今只存在 于电影和科幻小说里,理由很简单:我们还实现不了,至少目前为止。
我们力所能及的,算是“弱人工智能”(Narrow AI):执行特定任务的水平与人类相当,甚至超越人类的技术。现实中有很多弱人工智能的例子。这些技术有人类智能的一面。但是它们是如何做到的?智能来自哪里?这就涉及到下一个同心圆:机器学习。
机器学习
机器学习是实现人工智能的一种方法。机器学习的概念来自早期的人工智能研究者,已经研究出的算法包括决策树学习、归纳逻辑编程、增强学习和贝叶斯网络等。简单来说,机器学习就是使用算法分析数据,从中学习并做出推断或预测。与传统的使用特定指令集手写软件不同,我们使用大量数据和算法来“训练”机器,由此带来机器学习如何完成任务。
许多年来,计算机视觉一直是机器学习最佳的领用领域之一,尽管还需要大量的手动编码才能完成任务。研究者会手动编写一些分类器(classifier),如边缘检测筛选器,帮助程序辨别物体的边界;图形检测分类器,判断物体是否有八个面;以及识别“S-T-O-P”的分类器。在这些手动编写的分类器的基础上,他们再开发用于理解图像的算法,并学习如何判断是否有停止标志。
但是由于计算机视觉和图像检测技术的滞后,经常容易出错。
深度学习
深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。
举个例子,你可以将一张图片切分为小块,然后输入到神经网络的第一层中。在第一层中做初步计算,然后神经元将数据传至第二层。由第二层神经元执行任务,依次类推,直到最后一层,然后输出最终的结果。
每个神经元都会给其输入指定一个权重:相对于执行的任务该神经元的正确和错误程度。最终的输出由这些权重共同决定。因此,我们再来看看上面提到的停止标志示例。一张停止标志图像的属性,被一一细分,然后被神经元“检查”:形状、颜色、字符、标志大小和是否运动。神经网络的任务是判断这是否是一个停止标志。它将给出一个“概率向量”(probability vector),这其实是基于权重做出的猜测结果。在本文的示例中,系统可能会有 86% 的把握认定图像是一个停止标志,7% 的把握认为是一个限速标志,等等。网络架构然后会告知神经网络其判断是否正确。
不过,问题在于即使是最基础的神经网络也要耗费巨大的计算资源,因此当时不算是一个可行的方法。不过,以多伦多大学 Geoffrey Hinton 教授为首的一小批狂热研究者们坚持采用这种方法,最终让超级计算机能够并行执行该算法,并证明该算法的作用。如果我们回到停止标志那个例子,很有可能神经网络受训练的影响,会经常给出错误的答案。这说明还需要不断的训练。它需要成千上万张图片,甚至数百万张图片来训练,直到神经元输入的权重调整到非常精确,几乎每次都能够给出正确答案。不过值得庆幸的是Facebook 利用神经网络记住了你母亲的面孔;吴恩达 2012 年在谷歌实现了可以识别猫的神经网络。
如今,在某些情况下,通过深度学习训练过的机器在图像识别上表现优于人类,这包括找猫、识别血液中的癌症迹象等。谷歌的 AlphaGo 学会了围棋,并为比赛进行了大量的训练:不断的和自己比赛。
总结
人工智能的根本在于智能,而机器学习则是部署支持人工智能的计算方法。简单的将,人工智能是科学,机器学习是让机器变得更加智能的算法,机器学习在某种程度上成就了人工智能。
本文作者 Michael Copeland 曾是 WIRED 编辑,现在是硅谷知名投资机构 Andreessen Horowitz 的合伙人。