① 求一篇关于人工智能在游戏中的应用的论文,最好是关于分析某款游戏的,作为论文的参考!

买《游戏编程中的人工智能技术》到卓越亚马逊买,我买过一本,它后面有个参考文献,内容不少,没找到电子版,或者你去图书馆借借看~
不贵,一张魔兽点卡钱~有些书还是要买的~

ps:到网络文库搜“Windows游戏编程大师技巧”里面有一章介绍这方面的~

② 人工智能在生活中应用的例子

1、虚拟个人助理

Siri,GoogleNow和Cortana都是各种渠道(iOS,Android和WindowsMobile)上的智能数字个人助理。

总归,当你用你的声响提出要求时,他们会协助你找到有用的信息;你能够说“最近的我国饭馆在哪里?”,“今日我的日程安排是什么?”,“提醒我八点打电话给杰里”,帮手会经过查找信息,转播手机中的信息或发送指令给其他应用程序。

人工智能在这些应用程序中十分重要,由于他们搜集有关恳求的信息并运用该信息更好地辨认您的言语并为您供给适合您偏好的结果。

微软标明Cortana“不断了解它的用户”,而且终究会开展出猜测用户需求的能力。虚拟个人助理处理来自各种来历的许多数据以了解用户,并更有效地协助他们组织和跟踪他们的信息。

2、视频游戏

事实上,自从第一次电子游戏以来,视频游戏AI现已被运用了很长一段时间-人工智能的一个实例,大多数人可能都很熟悉。

可是AI的复杂性和有效性在曩昔几十年中呈指数级添加,导致视频游戏人物了解您的行为,呼应刺激并以不行预知的方法做出反应。2014年的中心地球:魔多之影关于每个非玩家人物的个性特征,他们对曩昔互动的回想以及他们的可变方针都特别有目共睹。

“孤岛惊魂”和“使命呼唤”等第一人称射击游戏或许多运用人工智能,敌人能够剖析其环境,找到可能有利于其生存的物体或举动;他们会点赞保护,查询声响,运用侧翼演习,并与其他AI进行沟通,以添加取胜的时机。

就AI而言,视频游戏有点简略,但由于职业巨大的商场,每年都在投入许多精力和资金来完善这种类型的AI。

3、在线客服

现在,许多网站都提供用户与客服在线聊天的窗口,但其实并不是每个网站都有一个真人提供实时服务。在很多情况下,和你对话的仅仅只是一个初级AI。大多聊天机器人无异于自动应答器,但是其中一些能够从网站里学习知识,在用户有需求时将其呈现在用户面前。

最有趣也最困难的是,这些聊天机器人必须擅于理解自然语言。显然,与人沟通的方式和与电脑沟通的方式截然不同。所以这项技术十分依赖自然语言处理(NLP)技术,一旦这些机器人能够理解不同的语言表达方式中所包含的实际目的,那么很大程度上就可以用于代替人工服务。

4、购买预测

如果京东、天猫和亚马逊这样的大型零售商能够提前预见到客户的需求,那么收入一定有大幅度的增加。亚马逊目前正在研究这样一个的预期运输项目:在你下单之前就将商品运到送货车上,这样当你下单的时候甚至可以在几分钟内收到商品。

毫无疑问这项技术需要人工智能来参与,需要对每一位用户的地址、购买偏好、愿望清单等等数据进行深层次的分析之后才能够得出可靠性较高的结果。

虽然这项技术尚未实现,不过也表现了一种增加销量的思路,并且衍生了许多别的做法,包括送特定类型的优惠券、特殊的打折计划、有针对性的广告,在顾客住处附近的仓库存放他们可能购买的产品。

这种人工智能应用颇具争议性,毕竟使用预测分析存在隐私违规的嫌疑,许多人对此颇感忧虑。

5、音乐和电影推荐服务

与其他人工智能系统相比,这种服务比较简单。但是,这项技术会大幅度提高生活品质的改善。如果你用过网易云音乐这款产品,一定会惊叹于私人FM和每日音乐推荐与你喜欢的歌曲的契合度。

从前,想要听点好听的新歌很难,要么是从喜欢的歌手里找,要么是从朋友的歌单里去淘,但是往往未必有效。喜欢一个人的一首歌不代表喜欢这个人的所有歌,另外有的时候我们自己也不知道为什么会喜欢一首歌、讨厌一首歌。

而在有人工智能的介入之后,这一问题就有了解决办法。也许你自己不知道到底喜欢包含哪些元素的歌曲,但是人工智能通过分析你喜欢的音乐可以找到其中的共性,并且可以从庞大的歌曲库中筛选出来你所喜欢的部分,这比最资深的音乐人都要强大。

电影推荐也是相同的原理,对你过去喜欢的影片了解越多,就越了解你的偏好,从而推荐出你真正喜欢的电影。

(2)人工智能参考文献举例扩展阅读

人工智能应用领域

机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。

值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。

中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的。

另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。智能家居之后,人工智能成为家电业的新风口,而长虹正成为将这一浪潮掀起的首个家电巨头。

长虹发布两款CHiQ智能电视新品,主打手机遥控器、带走看、随时看、分类看功能 。

③ 什么是人工智能,举例说明其在企管理中的作用

人工智能主要是基于互联网大数据,也就是说,企业管理中的实用基本我们分为两个部分,首先是对外:用户管理,用户行为习惯和喜好分析等等,未来的营销肯定是精准营销,他会精准到每一个客户的需求...
其次是内部:HR工作,我们员工也是互联网使用者,我们通过人工智能,可以搜集到员工的行为,情绪还有他们的发招需求,针对这些,人工智能可以提出一个完美的解决方案,比如我们应该怎么做才能激发员工的动力,提高创意和运营效益...

④ 弱人工智能的举例,不少于十个例子

语音来识别,图像识别,图像审源核,图像效果增强,文字识别,人脸识别,人体分析,语音合成,文本审核,智能写作,等等
具体例子(分别与上面对应):语音输入,网络查图片,社交网站发图片审核是否有本性或者敏感的内容,黑白图像上色,录入手写文字,验证是不是同一个人,人像抠图,文字播报或者是导航地图的语音,信息筛查,智能生成春联,等等
还有比如:智能音箱,火车站检测过往的人是否发热(不用一个一个仪器扫描),无人驾驶,阿尔法狗下围棋,刷脸支付,等等
如果我没有解决你的问题,请继续追问
求点赞,谢谢谢谢你了

⑤ 求一篇 人工智能行为识别的论文综述:

那你在网上找找(人工智能与机器人研究)吧~~看看别人的是怎么写的~

⑥ 人工智能应用在哪些方面呢能举几个典型的例子吗

1.智能机器人 智能机器人是一种具有感知能力、思维能力和行为能力的新一代机器人。这种机器人能够主动适应外界环境变化,并能够通过学习丰富自己的知识,提高自己的工作能力。目前,已研制出了肢体和行为功能灵活,能根据思维机构的命令完成许多复杂操作,能回答各种复杂问题的机器人。
2.智能网络 智能网络方面的两个重要研究内容分别是智能搜索引擎和智能网格。智能搜索引擎是一种能够为用户提供相关度排序、角色登记、兴趣识别、内容的语义理解、智能化信息过滤和推送等人性化服务的搜索引擎。智能网格是一种与物理结构和物理分布无关的网络环境,它能够实现各种资源的充分共享,能够为不同用户提供个性化的网络服务。可以形象地把智能网格比喻为一个超级大脑,其中的各种计算资源、存储资源、通信资源、软件资源、信息资源、知识资源等都像大脑的神经元细胞一样能够相互作用、传导和传递,实现资源的共享、融合和新生。
3.智能检索 智能检索是指利用人工智能的方法从大量信息中尽快找到所需要的信息或知识。随着科学技术的迅速发展和信息手段的快速提升,在各种数据库,尤其是因特网上存放着大量的、甚至是海量的信息或知识。面对这种信息海洋,如果还用传统的人工方式进行检索,已经很不现实。因此,迫切需要相应的智能检索技术和智能检索系统来帮助人们快速、准确、有效地完成检索工作。
4.智能游戏 游戏是一种娱乐活动。游戏技术与计算机技术结合产生了“计算机游戏”或“视频游戏”,与网络技术结合产生了“网络游戏”,与人工智能技术结合产生了智能游戏

⑦ 人工智能有什么好的参考书么

Peter Norvig 的《AI, Modern Approach 2nd》(无争议的领域经典)
Bishop, 《Pattern Recognition and Machine Learning》. 没有影印的,但是网上能下到。经典中的经典。Pattern Classification 和这本书是两本必读之书。《Pattern Recognition and Machine Learning》是很新(07年),深入浅出,手不释卷。

推荐两本有意思的书,
一本是《Simple Heuristics that Makes Us Smart》
另一本是《Bounded Rationality: The Adaptive Toolbox》

---------------------------------------------------------------------
<从CSDN上转载的>

机器学习与人工智能学习资源导引

我经常在 TopLanguage 讨论组上推荐一些书籍,也经常问里面的牛人们搜罗一些有关的资料,人工智能、机器学习、自然语言处理、知识发现(特别地,数据挖掘)、信息检索这些无疑是 CS 领域最好玩的分支了(也是互相紧密联系的),这里将最近有关机器学习和人工智能相关的一些学习资源归一个类:

首先是两个非常棒的 Wikipedia 条目,我也算是 wikipedia 的重度用户了,学习一门东西的时候常常发现是始于 wikipedia 中间经过若干次 google ,然后止于某一本或几本著作。

第一个是“人工智能的历史”(History of Artificial Intelligence),我在讨论组上写道:

而今天看到的这篇文章是我在 wikipedia 浏览至今觉得最好的。文章名为《人工智能的历史》,顺着 AI 发展时间线娓娓道来,中间穿插无数牛人故事,且一波三折大气磅礴,可谓"事实比想象更令人惊讶"。人工智能始于哲学思辨,中间经历了一个没有心理学(尤其是认知神经科学的)的帮助的阶段,仅通过牛人对人类思维的外在表现的归纳、内省,以及数学工具进行探索,其间最令人激动的是 Herbert Simon (决策理论之父,诺奖,跨领域牛人)写的一个自动证明机,证明了罗素的数学原理中的二十几个定理,其中有一个定理比原书中的还要优雅,Simon 的程序用的是启发式搜索,因为公理系统中的证明可以简化为从条件到结论的树状搜索(但由于组合爆炸,所以必须使用启发式剪枝)。后来 Simon 又写了 GPS (General Problem Solver),据说能解决一些能良好形式化的问题,如汉诺塔。但说到底 Simon 的研究毕竟只触及了人类思维的一个很小很小的方面 —— Formal Logic,甚至更狭义一点 Dective Reasoning (即不包含 Inctive Reasoning , Transctive Reasoning (俗称 analogic thinking)。还有诸多比如 Common Sense、Vision、尤其是最为复杂的 Language 、Consciousness 都还谜团未解。还有一个比较有趣的就是有人认为 AI 问题必须要以一个物理的 Body 为支撑,一个能够感受这个世界的物理规则的身体本身就是一个强大的信息来源,基于这个信息来源,人类能够自身与时俱进地总结所谓的 Common-Sense Knowledge (这个就是所谓的 Emboddied Mind 理论。 ),否则像一些老兄直接手动构建 Common-Sense Knowledge Base ,就很傻很天真了,须知人根据感知系统从自然界获取知识是一个动态的自动更新的系统,而手动构建常识库则无异于古老的 Expert System 的做法。当然,以上只总结了很小一部分我个人觉得比较有趣或新颖的,每个人看到的有趣的地方不一样,比如里面相当详细地介绍了神经网络理论的兴衰。所以我强烈建议你看自己一遍,别忘了里面链接到其他地方的链接。

顺便一说,徐宥同学打算找时间把这个条目翻译出来,这是一个相当长的条目,看不动 E 文的等着看翻译吧:)

第二个则是“人工智能”(Artificial Intelligence)。当然,还有机器学习等等。从这些条目出发能够找到许多非常有用和靠谱的深入参考资料。

然后是一些书籍

书籍:

1. 《Programming Collective Intelligence》,近年出的入门好书,培养兴趣是最重要的一环,一上来看大部头很容易被吓走的:P

2. Peter Norvig 的《AI, Modern Approach 2nd》(无争议的领域经典)。

3. 《The Elements of Statistical Learning》,数学性比较强,可以做参考了。

4. 《Foundations of Statistical Natural Language Processing》,自然语言处理领域公认经典。

5. 《Data Mining, Concepts and Techniques》,华裔科学家写的书,相当深入浅出。

6. 《Managing Gigabytes》,信息检索好书。

7. 《Information Theory:Inference and Learning Algorithms》,参考书吧,比较深。

相关数学基础(参考书,不适合拿来通读):

1. 线性代数:这个参考书就不列了,很多。

2. 矩阵数学:《矩阵分析》,Roger Horn。矩阵分析领域无争议的经典。

3. 概率论与统计:《概率论及其应用》,威廉·费勒。也是极牛的书,可数学味道太重,不适合做机器学习的。于是讨论组里的 Du Lei 同学推荐了《All Of Statistics》并说到

机器学习这个方向,统计学也一样非常重要。推荐All of statistics,这是CMU的一本很简洁的教科书,注重概念,简化计算,简化与Machine Learning无关的概念和统计内容,可以说是很好的快速入门材料。

4. 最优化方法:《Nonlinear Programming, 2nd》非线性规划的参考书。《Convex Optimization》凸优化的参考书。此外还有一些书可以参考 wikipedia 上的最优化方法条目。要深入理解机器学习方法的技术细节很多时候(如SVM)需要最优化方法作为铺垫。

王宁同学推荐了好几本书:

《Machine Learning, Tom Michell》, 1997.
老书,牛人。现在看来内容并不算深,很多章节有点到为止的感觉,但是很适合新手(当然,不能"新"到连算法和概率都不知道)入门。比如决策树部分就很精彩,并且这几年没有特别大的进展,所以并不过时。另外,这本书算是对97年前数十年机器学习工作的大综述,参考文献列表极有价值。国内有翻译和影印版,不知道绝版否。

《Modern Information Retrieval, Ricardo Baeza-Yates et al》. 1999
老书,牛人。貌似第一本完整讲述IR的书。可惜IR这些年进展迅猛,这本书略有些过时了。翻翻做参考还是不错的。另外,Ricardo同学现在是Yahoo Research for Europe and Latin Ameria的头头。

《Pattern Classification (2ed)》, Richard O. Duda, Peter E. Hart, David G. Stork
大约也是01年左右的大块头,有影印版,彩色。没读完,但如果想深入学习ML和IR,前三章(介绍,贝叶斯学习,线性分类器)必修。

还有些经典与我只有一面之缘,没有资格评价。另外还有两本小册子,论文集性质的,倒是讲到了了不少前沿和细节,诸如索引如何压缩之类。可惜忘了名字,又被我压在箱底,下次搬家前怕是难见天日了。

(呵呵,想起来一本:《Mining the Web - Discovering Knowledge from Hypertext Data》 )

说一本名气很大的书:《Data Mining: Practical Machine Learning Tools and Techniques》。Weka 的作者写的。可惜内容一般。理论部分太单薄,而实践部分也很脱离实际。DM的入门书已经不少,这一本应该可以不看了。如果要学习了解 Weka ,看文档就好。第二版已经出了,没读过,不清楚。

信息检索方面,Du Lei 同学再次推荐:

信息检索方面的书现在建议看Stanford的那本《Introction to Information Retrieval》,这书刚刚正式出版,内容当然up to date。另外信息检索第一大牛Croft老爷也正在写教科书,应该很快就要面世了。据说是非常pratical的一本书。

对信息检索有兴趣的同学,强烈推荐翟成祥博士在北大的暑期学校课程,这里有全slides和阅读材料:http://net.pku.e.cn/~course/cs410/schele.html

maximzhao 同学推荐了一本机器学习:

加一本书:Bishop, 《Pattern Recognition and Machine Learning》. 没有影印的,但是网上能下到。经典中的经典。Pattern Classification 和这本书是两本必读之书。《Pattern Recognition and Machine Learning》是很新(07年),深入浅出,手不释卷。

最后,关于人工智能方面(特别地,决策与判断),再推荐两本有意思的书,

一本是《Simple Heuristics that Makes Us Smart》

另一本是《Bounded Rationality: The Adaptive Toolbox》

不同于计算机学界所采用的统计机器学习方法,这两本书更多地着眼于人类实际上所采用的认知方式,以下是我在讨论组上写的简介:

这两本都是德国ABC研究小组(一个由计算机科学家、认知科学家、神经科学家、经济学家、数学家、统计学家等组成的跨学科研究团体)集体写的,都是引起领域内广泛关注的书,尤其是前一本,后一本则是对 Herbert Simon (决策科学之父,诺奖获得者)提出的人类理性模型的扩充研究),可以说是把什么是真正的人类智能这个问题提上了台面。核心思想是,我们的大脑根本不能做大量的统计计算,使用fancy的数学手法去解释和预测这个世界,而是通过简单而鲁棒的启发法来面对不确定的世界(比如第一本书中提到的两个后来非常著名的启发法:再认启发法(cognition heuristics)和选择最佳(Take the Best)。当然,这两本书并没有排斥统计方法就是了,数据量大的时候统计优势就出来了,而数据量小的时候统计方法就变得非常糟糕;人类简单的启发法则充分利用生态环境中的规律性(regularities),都做到计算复杂性小且鲁棒。

关于第二本书的简介:

1. 谁是 Herbert Simon

2. 什么是 Bounded Rationality

3. 这本书讲啥的:

我一直觉得人类的决策与判断是一个非常迷人的问题。这本书简单地说可以看作是《决策与判断》的更全面更理论的版本。系统且理论化地介绍人类决策与判断过程中的各种启发式方法(heuristics)及其利弊(为什么他们是最优化方法在信息不足情况下的快捷且鲁棒的逼近,以及为什么在一些情况下会带来糟糕的后果等,比如学过机器学习的都知道朴素贝叶斯方法在许多情况下往往并不比贝叶斯网络效果差,而且还速度快;比如多项式插值的维数越高越容易 overfit,而基于低阶多项式的分段样条插值却被证明是一个非常鲁棒的方案)。

在此提一个书中提到的例子,非常有意思:两个团队被派去设计一个能够在场上接住抛过来的棒球的机器人。第一组做了详细的数学分析,建立了一个相当复杂的抛物线近似模型(因为还要考虑空气阻力之类的原因,所以并非严格抛物线),用于计算球的落点,以便正确地接到球。显然这个方案耗资巨大,而且实际运算也需要时间,大家都知道生物的神经网络中生物电流传输只有百米每秒之内,所以 computational complexity 对于生物来说是个宝贵资源,所以这个方案虽然可行,但不够好。第二组则采访了真正的运动员,听取他们总结自己到底是如何接球的感受,然后他们做了这样一个机器人:这个机器人在球抛出的一开始一半路程啥也不做,等到比较近了才开始跑动,并在跑动中一直保持眼睛于球之间的视角不变,后者就保证了机器人的跑动路线一定会和球的轨迹有交点;整个过程中这个机器人只做非常粗糙的轨迹估算。体会一下你接球的时候是不是眼睛一直都盯着球,然后根据视线角度来调整跑动方向?实际上人类就是这么干的,这就是 heuristics 的力量。

相对于偏向于心理学以及科普的《决策与判断》来说,这本书的理论性更强,引用文献也很多而经典,而且与人工智能和机器学习都有交叉,里面也有不少数学内容,全书由十几个章节构成,每个章节都是由不同的作者写的,类似于 paper 一样的,很严谨,也没啥废话,跟《Psychology of Problem Solving》类似。比较适合 geeks 阅读哈。

另外,对理论的技术细节看不下去的也建议看看《决策与判断》这类书(以及像《别做正常的傻瓜》这样的傻瓜科普读本),对自己在生活中做决策有莫大的好处。人类决策与判断中使用了很多的 heuristics ,很不幸的是,其中许多都是在适应几十万年前的社会环境中建立起来的,并不适合于现代社会,所以了解这些思维中的缺点、盲点,对自己成为一个良好的决策者有很大的好处,而且这本身也是一个非常有趣的领域。

(完)