大数据需要学习什么
⑴ 大数据应该学习什么语言
大数据专业语言主要以java、python为主,课程知识点多,难度大,而且有本科学历要求!
大数据学习内容主要有:
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
你可以考察对比一下南京课工场、北大青鸟、中博软件学院等开设有大数据专业的学校。祝你学有所成,望点赞。
北大青鸟中博软件学院大数据课堂实拍
⑵ 大数据需要学习哪些内容
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的专数据集合,是需要新处属理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),平台有hadoop
⑶ 大数据都需要学什么
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
大数据
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
⑷ 大数据主要学什么
大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术等。
主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。
旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。
(4)大数据需要学习什么扩展阅读:
越来越多的行业对大数据应用持乐观的态度,大数据或者相关数据分析解决方案的使用在互联网行业,比如网络、腾讯、淘宝、新浪等公司已经成为标准。而像电信、金融、能源这些传统行业,越来越多的用户开始尝试或者考虑怎么样使用大数据解决方案,来提升自己的业务水平。
在“大数据”背景之下,精通“大数据”的专业人才将成为企业最重要的业务角色,“大数据”从业人员薪酬持续增长,人才缺口巨大。
⑸ 大数据要学哪些课程
大数据存储阶段:复百hbase、hive、sqoop。制
大数度汪迹山据架构设计阶困中段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采州差集阶段:Python、Scala。
大数据商业实战阶内段:实操企业大数据处理业务场景,分析需求、解决方案实施,技术实战应用。
⑹ 大数据专业需要学习什么知识
学习要根据自身情况来定,如果你是零基础,那就必须先从基础Java开始学起(大数据支持很多开发语言,但企业用的最多的还是JAVA),接下来学习数据结构、Linux系统操作、关系型数据库,夯实基础之后,再进入大数据的学习,具体可以按照如下体系:
第一阶段
CORE JAVA (加**的需重点熟练掌握,其他掌握)
Java基础**
数据类型,运算符、循环,算法,顺序结构程序设计,程序结构,数组及多维数组
面向对象**
构造方法、控制符、封装
继承**
多态**
抽象类、接口**
常用类
集合Collection、list**
HashSet、TreeSet、Collection
集合类Map**
异常,File
文件/流**
数据流和对象流**
线程(理解即可)
网络通信(理解即可)
第二阶段
数据结构
关系型数据库
Linux系统操作
Linux操作系统概述,安装Linux操作系统,图形界面操作基础,Linux字符界面基础,字符界面操作进阶,用户、组群和权限管理,文件系统管理,软件包管理与系统备份,Linux网络配置 (主要掌握Linux操作系统的理论基础和服务器配置实践知识,同时通过大量实验,着重培养动手能力。了解Linux操作系统在行业中的重要地位和广泛的使用范围。在学习Linux的基础上,加深对服务器操作系统的认识和实践配置能力。加深对计算机网络基础知识的理解,并在实践中加以应用。掌握Linux操作系统的安装、命令行操作、用户管理、磁盘管理、文件系统管理、软件包管理、进程管理、系统监测和系统故障排除。掌握Linux操作系统的网络配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服务的配置与管理。为更深一步学习其它网络操作系统和软件系统开发奠定坚实的基础。与此同时,如果大家有时间把javaweb及框架学习一番,会让你的大数据学习更自由一些)
重点掌握:
常见算法
数据库表设计,SQL语句,Linux常见命令
第三阶段
Hadoop阶段
离线分析阶段
实时计算阶段
重点掌握:
Hadoop基础,HDFS,MapRece,分布式集群,Hive,Hbase,Sqoop
,Pig,Storm实时数据处理平台,Spark平台
⑺ 大数据学习一般都学什么
您好,大数据学习一般分为6个阶段
第一阶段
JavaSE基础核心
第二阶段内
数据库关键技术容
第三阶段
大数据基础核心
第四阶段
Spark生态体系框架&大数据精选项目
第五阶段
Spark生态体系框架&企业无缝对接项目
第六阶段
Flink流式数据处理框架
大数据是最近几年新兴的专业,发展的前景是非常好的,选择大数据是没有错的!
⑻ 大数据主要学习什么呢
大数据是近五年兴起的行业,发展迅速,大数据需要学习什么?
大数据需要的语言
Java、回Scala、Python和Shell
分布式计答算
分布式计算研究的是如何把一个需要非常巨大的计算能力才能解决的问题分成许多小的部分,然后把这些部分分配给许多服务器进行处理,最后把这些计算结果综合起来得到最终的结果。
分布式存储
是将数据分散存储在多台独立的设备上。采用的是可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
分布式调度与管理
分布式的集群管理需要有个组件去分配调度资源给各个节点,这个东西叫yarn; 需要有个组件来解决在分布式环境下"锁"的问题,这个东西叫zookeeper; 需要有个组件来记录任务的依赖关系并定时调度任务,这个东西叫azkaban。
⑼ 大数据学习一般都学什么内容
大数据技术的学习内容有很多,包括:
基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。
hadoop maprece hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。
大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
⑽ 大数据时代需要学习什么技术
大数据时代需要学习数据的存储和处理技术。
大数据的存储主要是一些分布式文件系统,现在有好些分布式文件系统。比较火的就是GFS,HDFS前者是谷歌的内部使用的,后者是根据谷歌的相关论文用java开发的来源框架。hdfs可以学习。
然后就是数据处理是学maprece,这是大数据出的不错的实现,可以基于hdfs实现大数据处理和优化存储。
还有一个比较好的列式存储的数据库hbase,也是为了大数据儿生的非关系型数据库。
然后就是一些辅助工具框架,比如:hive,pig,zookeeper,sqoop,flum。