大数据分析中哪些现象会导致计算结果的失真

最明显的现象,拿川普与希拉里的民调来说吧。
之前各机构的民调显示,希拉里的支持率普遍比川普高,大选结果出来后,很多人傻眼。
这里面其实有一个“隐藏”理论的,很多人在接受民调时可能会隐藏其真实想法,导致民调结果的偏差。到真正投票的时候,他们才按照自己内心所想进行选择。
还有就是采样的不广泛,也会导致最终的分析结果失真。

Ⅱ 大数据起源,给你解析到底什么是大数据

大数据,英文名 data。因为传播已经成为习惯,我们并没有过多的去思考为什么用big data去描述,但是现在我们仔细回味一下,会发现大数据这个大为什么不用large为什么不用海量vast呢?归根结底我们可能就需要从语法上,来分析一下,它们三个之间的区别。big形容大小。更多的时候,是一种比较行为上的大,是种相对来说的感觉,而large和vast更多的时候形容的是的是一种形体上的巨大。
那么现在来推敲一下big data这个词,大数据这个大其实是一种相对的说法是相对于传统的数据体量来说的,过去任何时候的数据相对于现在来说都显得太过于渺小,而现在我们所说的大数据是一种量变最后达到了质变的概念。
数据这个词最早在媒体上风靡应该是2007年左右。往上追溯应该就是05年谷歌参加有美国官方举办的一个机器翻译大赛,最终由于使用了海量的相关数据而夺得第一,在那之后大数据这个概念渐渐的被业内人士所传播。那么到底什么是大数据呢?
大数据顾名思义,最表象的特征就是数据量够大。但是仅仅数据量够大,并不能构成大数据整体的含义。如果是海量杂乱无章,互之间没有关联的数据,即便再怎么定义,它也算不上是大数据。就譬如一个人体内的基因图谱,详细的基因图谱数据如果记录出来是一个很大体量的,但是没有意义。
大数据而且还有个概念,那就是多维度。在十年前,如果说国内哪一家公司最有资格说大数据的,那无疑是网络了。作为一个独占13亿用户专属的搜索公司来说,网络对于用户画像的记录,无疑是多维的。网络搜索,至今记录了无数用户每天在互联网上搜索的问题,或者说知识。在时间维度上用户对某些词汇搜索的频次高低这些都是数据。它可以通过对注册用户的甄别就可以知道搜索这个词汇或者是这个问题的用户是男生还是女生?年龄分布是是小孩、青年抑或是一个中年大叔?再到后来个人电脑开始普及,通过记录ip等信息,根据ip搜索的网络的问题的分类,可以判断中国各个区域,是南方富裕一点,还是北方富裕点?是江苏人更爱吃,还是闽南人更喜欢谈论吃?网络完全可以根据自己的数据生成得到国内各种关于此类的数据,普查之后所能得到的答案这就是因为网络所具有的数据是一个多维度的数据。他的数据收集过程,是一个长期的持续性的工作。
除了网络之外,腾讯的qq确实每年都会有一个关于qq的城市报告。它会根据qq的用户数据,甚至于至于活跃地点。在一个大的范围内青年QQ用户的占比,最终可以得到中国城市年轻度排行榜。可以根据这些数据判断,哪一个城市是,年轻人毕业之后最愿意去的。可以判断哪一个城市的,年轻人毕业之后,是回归率最高的。也可以判断哪一个城市的人才流失率更低,更容易留住外来人才。这些都是大数据多维度的应用。
大数据还有一个非常重要的特点,那就是全面性。经常在某些大型活动之前我们都会遇到。某些公司对于这件事情,会做出预测。然后最终的结果让我们大失所望。预测无疑是需要基于数据基础的预测,如果这个数据不够全面的话,最终的预测结果肯定相差甚大。
关于数据全面性有一个最经典的案例这是12年美国大选大选事件。一个名叫斯威尔的年轻人,利用大数据预测。成功预测出了51个州的选举果,要知道这在之前是从来没有发生过的事情。美国大选在之前就一直有专业的预测机构做预测,但是就连这种长期做数据,分析的公司都从来没有如此成功的预测过。那是因为斯威尔将网上所有关于选举的数据,包括新闻稿,以及facebook和推特上面人们关于选举的言论,所有的数据都做了甄选处理。这份数据反映的是网民全面几乎没有遗漏的想法,最终得到了某种程度上来说,比较具有完备性的数据,所以能够如此成功的预测13年美国大选的结果。

Ⅲ 美国总统大选,大数据究竟是赢了还是输了

是啊,大数据预测大选,结果大数据输的一败涂地,充分说明,人心这个东西是最不可测的。没有什么东西能预测到人心,大数据也不行。柠檬学院大数据。

Ⅳ 大数据深度分析,特朗普为什么能逆袭赢得美国大选

大数据不是万能的,大数据并不能预测人心,所以大选不能用大数据来说明。柠檬学院大数据。

Ⅳ 大数据的内容简介

公布官员财产美国是怎么做的,美国能让少部人腐败起来吗,美国式上访是怎么回事,凭什么美国矿难那么少,全民医改美国做得到吗,美国总统大选有什么利器才能赢,下一轮全球洗牌我们世界工厂会被淘汰吗……
除了上帝,任何人都必须用数据来说话。
大数据浪潮,汹涌来袭,与互联网的发明一样,这绝不仅仅是信息技术领域的革命,更是在全球范围启动透明政府、加速企业创新、引领社会变革的利器。现代管理学之父德鲁克有言,预测未来最好的方法,就是去创造未来。而“大数据战略”,则是当下领航全球的先机。
大数据,这一世界大潮的来龙去脉如何?数据技术变革,何以能推动政府信息公开、透明和社会公正?何以促发行政管理和商业管理革新,并创造无限商机?又何以既便利又危及我们每个人的生活?Google、网络之类搜索服务,何以会不再有立足之地?引领世界的数据帝国——美国和西欧,正在如何应对大数据时代?我们中国,又当如何作为?
本书通过讲述美国半个多世纪信息开放、技术创新的历史,以别开生面的经典案例——奥巴马建设“前所未有的开放政府”的雄心、公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,以及云计算、Facebook和推特等社交媒体、Web3.0与下一代互联网的未来图景等等,为您一一细解,数据创新给公民、政府、社会带来的种种挑战和变革。
美国是全书主体,但又处处反观中国当下的现实。回望中国,胡适批评“差不多先生”,黄仁宇求索“数目字管理”,作者从太平洋对面看到中美两国的差距,深知中国缺少什么、需要什么,故将十多年观察、思索所得,淘洗成这一本书。

Ⅵ 美国总统大选,大数据究竟是赢了还是输了

我们在9月底川普和希拉里的第一场总统候选人辩论后便预测川普会赢。那么,到底是什么原因助推川普步步紧逼希拉里,直到赢得大选大数据技术胜利

Ⅶ 为什么2016美国大选大数据预测普遍失灵

美国联邦法院就共和党阵营提出的要求阻止人工点票的诉讼举行了听证会,会后,联邦法官宣布法庭拒绝共和党的诉讼请求,小布什阻止佛州人工计票计划受挫。 共和党一直在努力寻求终止重新计票工作,他们认为在四个民主党占优的州进行重新计票是违宪行为,而民主党认为重新计票非常必要,因为由于计算机系统的故障,数以千计的选票出现了统计错误。 根据一项非官方的统计,共和党总统候选人布什在佛罗里达洲的选举中领先民主党候选人戈尔约300票,而佛罗里达州的25张选举人票将最终决定本届美国总统人选的最终归属。