当大数据遇上信息安全2016年5月
Ⅰ 大数据背景下,如何保护个人信息安全600字
这个真写不出来
Ⅱ 大数据时代信息安全问题点有哪些
"大数据"之"大"实际上指的是它的种类丰富、存储量大,因此管理起来是一个具有挑战性的工作。然而,无论从企业存储策略与环境来看,还是从数据与存储操作的角度来看,"管理风险"不可避免地成为了"大数据就是大风险"的潜在推力。红线隐私保护系统表示,大数据让人欢喜让人忧,围绕它的问题主要体现在五个方面。
1、云数据:目前来看,企业快速采用和实施诸如云服务等新技术还是存在不小的压力,因为它们可能带来无法预料的风险和造成意想不到的后果。而且,云端的大数据对于黑客们来说是个极具吸引力的获取信息的目标,所以这就对企业制定安全正确的云计算采购策略提出了更高的要求。
2、网络安全:随着在线交易、在线对话、在线互动,在线数据越来越多,黑客们的犯罪动机也比以往任何时候都来得强烈。如今的黑客们组织性更强,更加专业,作案工具也是更加强大,作案手段更是层出不穷。相比于以往一次性数据泄露或者黑客攻击事件的小打小闹,现在数据一旦泄露,对整个企业可以说是一着不慎满盘皆输,不仅会导致声誉受损、造成巨大的经济损失,严重的还要承担法律责任。所以在大数据时代,网络的恢复能力以及防范策略可以说是至关重要。
3、隐私:随着产生、存储、分析的数据量越来越大,隐私问题在未来的几年也将愈加凸显。所以新的数据保护要求以及立法机构和监管部门的完善应当提上日程。
4、消费化:众所周知,数据的搜集、存储、访问、传输必不可少的需要借助移动设备,所以大数据时代的来临也带动了移动设备的猛增。现在很多用户互联网体验都已经转向了移动端,移动设备更多的承载了数据储存工具。
5、互相联系的供应链:每个企业都是复杂的、全球化的、相互依存的供应链中的一部分,而供应链很可能就是最薄弱的环节。信息将供应链紧密地联系在一起,从简单的数据到商业机密再到知识产权,而信息的泄露可能导致名誉受损、经济损失、甚至是法律制裁。信息安全的重要性也就不言而喻了,它在协调企业之间承包和供应等业务关系扮演着举足轻重的角色。
Ⅲ 大数据时代给信息安全带来的挑战
大数据时代给信息安全带来的挑战
在大数据时代,商业生态环境在不经意间发生了巨大变化:无处不在的智能终端、随时在线的网络传输、互动频繁的社交网络,让以往只是网页浏览者的网民的面孔从模糊变得清晰,企业也有机会进行大规模的精准化的消费者行为研究。大数据蓝海将成为未来竞争的制高点。
大数据在成为竞争新焦点的同时,不仅带来了更多安全风险,同时也带来了新机遇。
一、大数据成为网络攻击的显著目标。
在网络空间,大数据是更容易被“发现”的大目标。一方面,大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。另一方面,数据的大量汇集,使得黑客成功攻击一次就能获得更多数据,无形中降低了黑客的进攻成本,增加了“收益率”。
二、大数据加大隐私泄露风险。
大量数据的汇集不可避免地加大了用户隐私泄露的风险。一方面,数据集中存储增加了泄露风险,而这些数据不被滥用,也成为人身安全的一部分。另一方面,一些敏感数据的所有权和使用权并没有明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题。
三、大数据威胁现有的存储和安防措施。
大数据存储带来新的安全问题。数据大集中的后果是复杂多样的数据存储在一起,很可能会出现将某些生产数据放在经营数据存储位置的情况,致使企业安全管理不合规。大数据的大小也影响到安全控制措施能否正确运行。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。
四、大数据技术成为黑客的攻击手段。
在企业用数据挖掘和数据分析等大数据技术获取商业价值的同时,黑客也在利用这些大数据技术向企业发起攻击。黑客会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使黑客的攻击更加精准。此外,大数据也为黑客发起攻击提供了更多机会。黑客利用大数据发起僵尸网络攻击,可能会同时控制上百万台傀儡机并发起攻击。
五、大数据成为高级可持续攻击的载体。
传统的检测是基于单个时间点进行的基于威胁特征的实时匹配检测,而高级可持续攻击(APT)是一个实施过程,无法被实时检测。此外,由于大数据的价值低密度特性,使得安全分析工具很难聚焦在价值点上,黑客可以将攻击隐藏在大数据中,给安全服务提供商的分析制造很大困难。黑客设置的任何一个会误导安全厂商目标信息提取和检索的攻击,都会导致安全监测偏离应有方向。
六、大数据技术为信息安全提供新支撑。
当然,大数据也为信息安全的发展提供了新机遇。大数据正在为安全分析提供新的可能性,对于海量数据的分析有助于信息安全服务提供商更好地刻画网络异常行为,从而找出数据中的风险点。对实时安全和商务数据结合在一起的数据进行预防性分析,可识别钓鱼攻击,防止诈骗和阻止黑客入侵。网络攻击行为总会留下蛛丝马迹,这些痕迹都以数据的形式隐藏在大数据中,利用大数据技术整合计算和处理资源有助于更有针对性地应对信息安全威胁,有助于找到攻击的源头。
Ⅳ 大数据时代个人的信息安全面临什么问题
近日,大数据时代个人的信息安全,正成为国内外舆论关注的焦点。
国内有网友发现,同样的商品或服务,老客户看到的价格反而比新客户要贵出许多,在机票、酒店、电影、电商、出行等多个价格有波动的平台都存在类似情况。这在互联网行业被称作“大数据杀熟”。另外,李彦宏在中国高层发展论坛上就个人信息利用问题发表的观点——“我想中国人可以更加开放,对隐私问题没有那么敏感。如果他们愿意用隐私交换便捷性,很多情况下他们是愿意的,那我们就可以用数据做一些事情。”此言一出,李彦宏成为众矢之的。
很长一段时间以来,我们享受到了大数据时代带来的种种便利,而忽视个人信息被攫取和利用的巨大风险。我们本以为逃匿在网络空间是为了“隐身”,可在互联网企业眼里,我们其实是在“裸奔”。人们关于个人信息安全的保护意识,开始苏醒。
Ⅳ 如何利用大数据来处理网络安全攻击
“大数据”已经成为时下最火热的IT行业词汇,各行各业的大数据解决方案层出不穷。究竟什么是大数据、大数据给信息安全带来哪些挑战和机遇、为什么网络安全需要大数据,以及怎样把大数据思想应用于网络安全技术,本文给出解答。
一切都源于APT
APT(Advanced Persistent Threat)攻击是一类特定的攻击,为了获取某个组织甚至是国家的重要信息,有针对性的进行的一系列攻击行为的整个过程。APT攻击利用了多种攻击手段,包括各种最先进的手段和社会工程学方法,一步一步的获取进入组织内部的权限。APT往往利用组织内部的人员作为攻击跳板。有时候,攻击者会针对被攻击对象编写专门的攻击程序,而非使用一些通用的攻击代码。此外,APT攻击具有持续性,甚至长达数年。这种持续体现在攻击者不断尝试各种攻击手段,以及在渗透到网络内部后长期蛰伏,不断收集各种信息,直到收集到重要情报。更加危险的是,这些新型的攻击和威胁主要就针对国家重要的基础设施和单位进行,包括能源、电力、金融、国防等关系到国计民生,或者是国家核心利益的网络基础设施。
现有技术为什么失灵
先看两个典型APT攻击案例,分析一下盲点在哪里:
1、 RSA SecureID窃取攻击
1) 攻击者给RSA的母公司EMC的4名员工发送了两组恶意邮件。邮件标题为“2011 Recruitment Plan”,寄件人是[email protected],正文很简单,写着“I forward this file to you for review. Please open and view it.”;里面有个EXCEL附件名为“2011 Recruitment plan.xls”;
2) 很不幸,其中一位员工对此邮件感到兴趣,并将其从垃圾邮件中取出来阅读,殊不知此电子表格其实含有当时最新的Adobe Flash的0day漏洞(CVE-2011-0609)。这个Excel打开后啥也没有,除了在一个表单的第一个格子里面有个“X”(叉)。而这个叉实际上就是内嵌的一个Flash;
3) 该主机被植入臭名昭著的Poison Ivy远端控制工具,并开始自BotNet的C&C服务器(位于 good.mincesur.com)下载指令进行任务;
4) 首批受害的使用者并非“位高权重”人物,紧接着相关联的人士包括IT与非IT等服务器管理员相继被黑;
5) RSA发现开发用服务器(Staging server)遭入侵,攻击方随即进行撤离,加密并压缩所有资料(都是rar格式),并以FTP传送至远端主机,又迅速再次搬离该主机,清除任何踪迹;
6) 在拿到了SecurID的信息后,攻击者就开始对使用SecurID的公司(例如上述防务公司等)进行攻击了。
2、 震网攻击
遭遇超级工厂病毒攻击的核电站计算机系统实际上是与外界物理隔离的,理论上不会遭遇外界攻击。坚固的堡垒只有从内部才能被攻破,超级工厂病毒也正充分的利用了这一点。超级工厂病毒的攻击者并没有广泛的去传播病毒,而是针对核电站相关工作人员的家用电脑、个人电脑等能够接触到互联网的计算机发起感染攻击,以此 为第一道攻击跳板,进一步感染相关人员的U盘,病毒以U盘为桥梁进入“堡垒”内部,随即潜伏下来。病毒很有耐心的逐步扩散,利用多种漏洞,包括当时的一个 0day漏洞,一点一点的进行破坏。这是一次十分成功的APT攻击,而其最为恐怖的地方就在于极为巧妙的控制了攻击范围,攻击十分精准。
以上两个典型的APT攻击案例中可以看出,对于APT攻击,现代安全防御手段有三个主要盲点:
1、0day漏洞与远程加密通信
支撑现代网络安全技术的理论基础最重要的就是特征匹配,广泛应用于各类主流网络安全产品,如杀毒、入侵检测/防御、漏洞扫描、深度包检测。Oday漏洞和远程加密通信都意味着没有特征,或者说还没来得及积累特征,这是基于特征匹配的边界防护技术难以应对的。
2、长期持续性的攻击
现代网络安全产品把实时性作为衡量系统能力的一项重要指标,追求的目标就是精准的识别威胁,并实时的阻断。而对于APT这种Salami式的攻击,则是基于实时时间点的检测技术难以应对的。
3、内网攻击
任何防御体系都会做安全域划分,内网通常被划成信任域,信任域内部的通信不被监控,成为了盲点。需要做接入侧的安全方案加固,但不在本文讨论范围。
大数据怎么解决问题
大数据可总结为基于分布式计算的数据挖掘,可以跟传统数据处理模式对比去理解大数据:
1、数据采样——>全集原始数据(Raw Data)
2、小数据+大算法——>大数据+小算法+上下文关联+知识积累
3、基于模型的算法——>机械穷举(不带假设条件)
4、精确性+实时性——>过程中的预测
使用大数据思想,可对现代网络安全技术做如下改进:
1、特定协议报文分析——>全流量原始数据抓取(Raw Data)
2、实时数据+复杂模型算法——>长期全流量数据+多种简单挖掘算法+上下文关联+知识积累
3、实时性+自动化——>过程中的预警+人工调查
通过传统安全防御措施很难检测高级持续性攻击,企业必须先确定日常网络中各用户、业务系统的正常行为模型是什么,才能尽早确定企业的网络和数据是否受到了攻击。而安全厂商可利用大数据技术对事件的模式、攻击的模式、时间、空间、行为上的特征进行处理,总结抽象出来一些模型,变成大数据安全工具。为了精准地描述威胁特征,建模的过程可能耗费几个月甚至几年时间,企业需要耗费大量人力、物力、财力成本,才能达到目的。但可以通过整合大数据处理资源,协调大数据处理和分析机制,共享数据库之间的关键模型数据,加快对高级可持续攻击的建模进程,消除和控制高级可持续攻击的危害。
Ⅵ 大数据时代的到来,拿什么拯救网络信息安全
对于个人来说,要注意自己资料的隐私。对于企业来说,做好隐私保护的同时,要及时对网络进行监控,发现泄密,不良信息。
目前,已经有很多企业通过网络舆情监测技术来保护自己,同时获取有价值的数据,信息。
以上就是网络舆情系统的效果,应用。其实就是对网络公开信息进行监控。
具体的用途如下:
1. 可实时监测微博,论坛,博客,新闻,搜索引擎中相关信息
2. 可对重点QQ群的聊天内容进行监测
3. 可对重点首页进行定时截屏监测及特别页面证据保存
4. 对于新闻页面可以找出其所有转载页面
5. 系统可自动对信息进行分类
6. 系统可追踪某个专题或某个作者的所有相关信息
7. 监测人员可对信息进行挑选,再分类
8. 监测人员可以基于自己的工作结果轻松导出制作含有图表的舆情日报周报