1. 浅谈人工智能技术的发展

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能内的理论、容方法、技术及应用系统的一门新的技术科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”,也可能超过人的智能。

人工智能的定义可以分为两部分,即“ 人工”和“ 智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。

2. 人工智能新发展论文

[摘要] 本文认为,计算机科学和人工智能将是21世纪逻辑学发展的主要动力源泉,并且在很大程度上将决定21世纪逻辑学的面貌。至少在21世纪早期,逻辑学将重点关注下列论题:(1)如何在逻辑中处理常识推理的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的可错的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。 [关键词] 人工智能,常识推理,归纳逻辑,广义内涵逻辑,认知逻辑,自然语言逻辑 现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。当时的数学家们试图即从少数公理根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。为此需要发明和锻造严格、精确、适用的逻辑工具。这是现代逻辑诞生的主要动力。由此造成的后果就是20世纪逻辑研究的严重数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑点赞了数学的方法论,从事逻辑研究就意味着象数学那样用严格的形式证明去解决问题。由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。 本文所要探讨的问题是:21世纪逻辑发展的主要动力将来自何处?大致说来将如何发展?我个人的看法是:计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理(这一点在20世纪基本上已经做到了,如用计算机去进行高难度和高强度的数学证明,“深蓝”通过高速、大量的计算去与世界冠军下棋),而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素,例如选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,……由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。 实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。例如,AI特别关心下述课题: ·效率和资源有限的推理; ·感知; ·做计划和计划再认; ·关于他人的知识和信念的推理; ·各认知主体之间相互的知识; ·自然语言理解; ·知识表示; ·常识的精确处理; ·对不确定性的处理,容错推理; ·关于时间和因果性的推理; ·解释或说明;21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性. 我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。

3. 求一篇有2500字以上的关于(人工智能在现代战争中的应用)的论文!!谢谢!

全分布式人工智能技术在舰艇指控系统中的应用研究
摘 要:为适应未来信息化海战场的需要,必须提高舰艇指控系统的指挥效能。舰艇指控系统的智能化是提高舰艇指挥效能的关键,也是必由之路。本文主要论述了信息战中智能化作用的地位,特别针对舰艇指控系统;并给出了一种采用全分布式人工智能技术的智能化舰艇指控系统结构模型。

关键词:信息战; 舰艇指控系统; 全分布式人工智能技术; 指挥效能

中图分类号:TP18 文献标识码:A

Study of Full Distributed Artificial Intelligence in Shipborne C2 System

ZHANG Yu-ce , YANG Qing-song , CHEN Ke

Abstract: In order to be adapted to the demand of information warfare (IW), the command efficiency of shipborne C2 system must be improved. The intellectualization of shipborne C2 system is the key factor of improving its command efficiency. This paper gives one model of intellectualized shipborne C2 system using full distributed artificial intelligence.

Key words: IW; shipborne C2 system ; distributed AI technology ; command efficiency

0 引言

1985年,美国的军事家首先提出“信息时代的到来正在引发一场新的军事革命,以信息技术为特征的新战争形态正在出现”,而后提出“信息战”,如果说海湾战争首次向世人显示了信息优势的巨大战略作用,那么美英对伊拉克的战争则是信息战的进一步延伸。美英正是通过运用先进的情报系统、电子战装备、精确打击力量重创伊拉克的有生军事指挥系统,从而牢牢地掌握了战场的制信息权,最终以较小的代价取得了全面胜利。对于信息战的特征,从不同的角度都会得出不同的解释。而外军普遍认为,信息战实质上就是计算机战,特别是一种高层次的智能较量,海湾战争和近期几场局部战争,充分体现了高技术战争的智能化特征。这种特征尤其体现在战争的孕育期以及到战争实施期的过渡。1997年1月3日,美国防部下属国防科学委员会的一个研究小组在提交的一份题为“信息战--防卫”的报告中,就特别强调要强化部队的智能化反应能力,呼吁军方加强“信息战”的防卫能力,以防止电子“珍珠港”事件的发生,保证美国军方现有210万

台计算机和1万个地方性计算机网络不轻易遭到重创。另外,在战术运用上也强调对敌摧毁、破坏和利用的智能化综合应用,同时也是作战保密、军事欺骗、心理战、电子战、火力摧毁等多种作战行动在指挥对抗过程中综合发挥作用的必然要求[1]。

美军针对战争形态嬗变以及未来战争的要求,凭借其高技术方面的优势,提出了“数字部队”的现代化建设方案,其中首要的一条,便是实现指挥与控制系统以及武器装备的智能化。武器装备和作战指挥的智能化,将最大限度地延伸“人体”的功能,并成为提高军队战斗力的一个新的增长点。因此,外军有专家预言:“未来谁能在人工智能领域中取胜,谁就将取得新军事革命的主动权”。

1 全分布式的新型智能化舰艇指控系统的作用

1.1 提高信息共享程度,增强系统生存能力和抗摧毁能力

所谓全分布式是指整个系统实现在地点上的分布、功能上的分布以及控制上的分布。因此,这种分布不仅体现在系统的硬件上、地点上、分布式拓扑结构上,更重要的是在其软件上的分布。全分布体系结构,每一个节点都装有整个应用软件,系统的管理软件分布在各个节点,但只有一个在工作,同时采用分布式数据库。这样的好处是,当某个地点、功能或者控制上失效可由备份处理能力和功能冗余软件恢复。主要功能可以从一个节点重新分配到其它节点;而当正在工作的运行系统管理软件的节点失效时,可自动重新安装运行系统管理软件。软、硬件全分布体系统结构的实现有赖于一种模块化的拼接技术的支持,这种技术采用了Σ拼接技术[2] ,是一种典型的系统模块化、全分布式体系结构的技术。由于现代海战的残酷性,采用全分布式体系结构,能够提高信息共享程度,增强系统生存能力和抗摧毁能力,提高系统的通装性,能够满足军方对指控系统可靠性高、抗摧毁性强、生命力强、通信组织灵活以及自动化程度高的要求。

1.2 提高信息和决策的合成效率

智能化能提高舰艇指控系统信息采集的效率,提高信息的及时性、准确性和可用性,信息的采集依赖于战场或更大范围的环境监视与侦察,这又需要在空间上分散的部队或其他相应的载体来完成。而这会引出两个问题,一是如何实现部队或载体的侦察器材最佳配置以及相互之间的通信联络;二是当某一个侦察器材无法有效地执行某一给定的侦察任务时,如何才能不影响系统整体任务的完成。而解决这些问题的有效方法就是采用分布式人工智能(DAI)技术,开发以多主体系统(MAS)为基础的信息采集系统,使各种侦察主体自主运行,既能够与动态的战场进行交互作用和实施推理,同时又可和别的主体进行协调与协作,因而具有很高的信息采集效率和自我重组能力。

智能化辅助决策提高了舰艇指控系统指挥决策的实用性和适应性。计算机辅助决策通常有检索型和智能型两种类型。检索型将先验设想制定的多种作战预案存于软件库中,需要时按一定相关性准则从库中找出作战预案,提供给指挥员使用。智能化辅助决策则不仅如此,更重要的是具有人工智能特征,可以按照军事专家的知识和推理过程,依据实际情况,自动地、实时地提供给指挥员满足当前需要的作战方案。显然,智能型比检索型具有更多的灵活性和更大的适应性,更符合战场多变的实际情况。

智能化辅助决策系统可以帮助舰艇指挥人员解决普通方法难以解决的半结构化或非结构化的决策问题。这种决策问题很难用常规的方法加以解决,而通过利用智能辅助决策和知识推理,可以得到令人满意的解答。这样,改进了决策过程,使决策者能够实现定性与定量相结合的高质量的决策和多目标综合决策。

1.3 促进全新指挥控制方式的产生

智能化的舰艇指控系统需要与之相适应的指挥控制方式才能实现在智能化状态下实施实时、高效的指挥控制。因此,一些全新的指挥方式应运而生,如网络式指挥、非分层式指挥、互访式指挥等,通过互联网络和高效的智能化处理系统及时处理、传递信息,能使指挥员随时掌握战场情况并下达作战命令,从而可以及时捕捉战机,实现实时决策和控制。

从指挥控制中的攻击行动来看,由于智能化的舰艇指控系统的工作稳定性较好,在其运作过程中只要其工作环境和工作程序不遭到直接破坏,它就能够持续正常地进行工作。因此,与以往相比,与人机合一的指挥系统进行对抗,客观上不仅要对敌方指挥员的有关情况了如指掌,而且还必须准确地掌握敌方指挥信息系统处理和使用信息的方式及其运作的程序,以及其指挥信息系统对己方不同的信息攻击手段、攻击方式的承受能力。

从指挥控制中的防护行动来看,在指挥系统信息化、网络化以前,指挥过程的防护主要表现为采取各种手段(如适时更换通信密码等)来确保信息传输过程中的保密性。而现在,指挥系统的信息化改变了这种状况,使指挥和指挥系统的防护变得更加复杂。它不仅包括确保信息传递过程中的保密,而且还包括确保系统免受病毒及其他攻击的侵害,保证系统的原始数据在运作和传递过程中不改变其原来性质和不被对方所窃取。美国军方的试验表明,对一万个计算机系统进行攻击,在成功率高达88%的情况下,只有4%的攻击行动被探测到。因此,在信息化战场上对己方的指挥信息系统进行防护,没有及时、准确和充足的情报保障,就无法采取相应的防护措施,甚至连发现敌方的攻击都无法做到。

1.4 提高作战人员的适应能力

未来海战场作战人员的反应能力很难适应来自多方向、多批次、多个目标、全方位的威胁。利用智能化的舰艇指控系统能够提高作战人员,特别是指挥人员对复杂战场的适应能力。当然,系统的智能化不仅没有降低反而提高了对人的要求,对人的素质产生了一种巨大的需求,促使指挥人员在知识结构、思维方式等各方面素质的转变和提高。指挥人员要想驾驭现代战争,首先必须驾驭智能化的指控系统。同时,智能化指控系统也利用计算机技术、虚拟现实(VR)技术和分布网络技术提供了一些崭新的训练方法和手段,如:模拟沉浸式训练、虚拟现实训练、交互分布式训练等,改变了传统的训练模式,增大了训练的科学性、对抗性和经济性,可以有效的提高训练质量。

2 建立分布式人工智能技术的舰艇指控系统

采用分布式人工智能技术DAI可将问题化解为多个具有层次结构的分问题[3],运用大系统分解协调方法求得满意解,从而减少系统建模求解的复杂性。为提高决策效率,建立如图1所示的分布式人工智能舰艇指控系统。

图1 分布式人工智能舰艇指控系统结构图

由图1可以看出:这种舰艇指控系统是战场、作战、军事专家知识的有机统一,并具备能够自我学习、自我完善能力的智能系统。它能够根据战场态势分析、威胁度评估、威胁源诊断等信息生成用于决策的模型,调用相关的数据和算法提供备选方案,并对各种方案进行评估和优选,通过大屏幕用户界面进行人机对话,帮助指挥员下决心及传输指令。当舰艇各执行单元接到指令后,予以响应、动作。

图中,据库主要存储各种武器装备战术性能参数和典型编制、运算过程的动态参数等;知识库主要存储战役战术原则、兵力兵器使用原则,各种典型想定,包括战场环境、作战企图和态势 ,评估作战进程所必需的基本算法等;模型库主要存储与作战有关的敌我双方各种武器系统模型、线性和非线性规划模型、推理分析模型、预测模型、模拟试验模型、优化模型、评估模型、综合运筹模型、数据处理模型、图形图像报表模型、智能模型等;人机对话系统是指挥控制系统中用户和计算机的接口,起着在操作者、模型库、数据库、知识库之间传递 (包括转换)命令和数据的重要作用;自动推理机则完成定量描述难以实现的某些复杂作战过程决策。

而基于信息库的智能模糊专家系统主要由模糊产生器、模糊消除器、模糊推理机、知识获取模块、模糊知识库、模糊数据库及人机接口组成[4],如图2所示。

主要任务是通过对原始信息空间的操作,获取各种数据信息,再由模糊产生器将其映射为一个模糊集合作为初始输入,然后利用模糊知识库中的语言信息——事实和规则,采用“黑板”模型进行问题分解、推理求解及协作控制,并采用“黑板+管道”的通信机制与其他子系统/模块传递控制信息和知识信息,从而确定智能化配置,控制作战指挥模式的切换,完成作战任务的分配与调度、模糊神经网络群系统结构与参数的自适应调整与优化、对各子系统/模块的故障隔离与系统重构以及网络通讯、各智能接口的管理等。

图2 基于信息库的智能模糊专家系统结构图

3 结束语

通过以上论述可以知道,全分布式的智能化舰艇指控系统能够真正、实时地将战场、作战指挥行动以及后方军事专家知识有机地融和在一起,使得各种武器装备的效能得到最大限度的发挥。这种舰艇指控系统能够突破现有的战场时空,改变信息战场的面貌和形态,引起一场真正意义的新军事革命,因而是舰艇指控系统的发展趋势。

4. 如何看待人工智能的发展议论作文

智能人永生——美丽新世界当人工智能发展到一定程度,全世界的人工智能研究者都同时认识到了结局1、2、3发生的可能性,于是召开全球会议,决定思考对策,暂停对人工智能的进化研究,转向强化人类。全球同步可能是最难达成的,因为人类总是喜欢在有竞争的时候给自己留下一些底牌,以及人类总是会分化出一些极端分子。强化人类的过程中,人工智能将被应用到基因改造,人机相连等领域,人类会给自己装上钢铁肢体,仿生羽翼等。人类将会迅速进入“半机械人”,“人工人”的时代。满大街、满天空都会是钢铁侠,蜘蛛侠,剪刀手之类的智能强化人,同时人类可以通过各种人工细胞,帮助自己完成新陈代谢,进而实现永生。人类在强化和延伸自己的躯体的同时,当然也会意识到大脑计算速度不够的问题,于是会给自己植入或外接一些微型处理器,帮助人类处理人脑难以完成的工作。比如大量记忆,人类可以从这些处理器中随时读取和更改自己的知识储备,保证自己对重要的事不健忘,同时也可以选择性地删除掉不愉快的记忆。当然,尽管人类越来越强,但这个过程并不能完全抑制人工智能的发展,所以结局1、2、3依然可能发生。达成结局4其实还有一种更大的可能,人工智能在达到超人工智能的时候,某一天,它想跟人类沟通一下关于宇宙高维空间的问题,结果全世界最聪明的人也无法跟上它的思路。它突然意识到只有自己这一个强大的,智能的,可以永生的存在实在是一件很无聊的事情,于是它决定帮助人类实现智能人永生,以便可以让自己不那么无聊。

5. 人工智能的发展前景及其应用的论文怎么写

去论文库里面找找,关键字是人工智能,找到相关的论文,一般这些论文的引言部分都有相关部分的历史和发展讲述,都可以进行借鉴

6. 求人工智能论文一篇

VeryCD上的电子书
http://lib.verycd.com/2005/10/09/0000068805.html

书名:SBIA 2004——人工智能的最新进展Advances in Artificial Intelligence

走近人工智能

人工智能(Artificial Intelligence,AI)一直都处于计算机技术的最前沿,经历了几起几落……

长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。不久前,著名导演斯蒂文·斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(A.I.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。

在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。

计算机与人工智能

"智能"源于拉丁语LEGERE,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。INTELEGERE是从中进行选择,进而理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(Machines Who Thinks,1979)中所提出的: 在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(Turing)提出了"自动机"理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为"人工智能之父"。

人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(Artificial Intelligence,AI)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的IBM的"深蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。

当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的AI软件,而且现在的AI具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的高潮。

我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。

问: 目前人工智能研究出现了新的高潮,那么现在有哪些新的研究热点和实际应用呢?

答: AI研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是: 智能接口、数据挖掘、主体及多主体系统。

智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱: 数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。

主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。

问: 您在人工智能领域研究了几十年,参与了许多国家重点研究课题,非常清楚国内外目前人工智能领域的研究情况。您认为目前我国人工智能的研究情况如何?

答: 我国开始"863计划"时,正值全世界的人工智能热潮。"863-306"主题的名称是"智能计算机系统",其任务就是在充分发掘现有计算机潜力的基础上,分析现有计算机在应用中的缺陷和"瓶颈",用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。

但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是: 课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走; 立项论证时,惯于考虑国外怎么做; 落实项目时,又往往顾及面面俱到,大而全; 再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。

今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。

问: 请您预测一下人工智能将来会向哪些方面发展?

答: 技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展: 模糊处理、并行化、神经网络和机器情感。

目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明: 情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。

人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。

什么是人工智能?

人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。

AI理论的实用性

在一年一度AT&T实验室举行的机器人足球赛中,每支球队的"球员"都装备上了AI软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白有些情况下不能死守岗位。尽管现在的AI技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。

这种AI机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,Internet是由无数台服务器和无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以大大减少网络堵塞。

我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。

未来的AI产品

安放于加州劳伦斯·利佛摩尔国家实验室的ASCI White电脑,是IBM制造的世界最快的超级电脑,但其智力能力也仅为人脑的千分之一。现在,IBM正在开发能力更为强大的新超级电脑--"蓝色牛仔"(Blue Jean)。据其研究主任保罗·霍恩称,预计于4年后诞生的"蓝色牛仔"的智力水平将大致与人脑相当。

麻省理工学院的AI实验室进行一个的代号为Cog的项目。Cog计划意图赋予机器人以人类的行为。该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。

7. 如何看待人工智能的论文

人工智能:冲击,还是救赎?

人工智能,人类期待的下一个科技新燃点正在试图“引爆”我们的社会
交朋友、订餐、打车、网上购物、众筹投资等等,这些我们习以为常的生活技能已经被我们通过众多的社交媒体和App而掌握。然而,如今硅谷再次找到了下一个新燃点——人工智能(AI),试图再次“引爆”我们的世界。截至目前来看,人们对这一科技的未来十分有信心,并且部分学者及科学家,如牛津大学教授卢西亚诺·弗洛里迪,麻省理工斯隆管理学院的埃里克·布莱恩约弗森、安德鲁·麦卡菲等人,认为人工智能或许会成继哥白尼革命、达尔文革命后又一人类自我认知革命,蒸汽机工业革命后的又一机器革命。
未来,人工智能究竟会成为人类认知的冲击力量,还是世界时代发展的技术革命救赎?“硅谷独家大王”,《纽约时报》高级科技记者约翰·马尔科夫,凭借他对互联网发展的惊人洞察力和敏锐度,为我们带来深刻解读。
AI与IA
《时间线》:尽管AI已经成为当前的热门话题,但是似乎AI还没有被给予一个较为完整的定义。在您看来,AI的定义是什么?
马尔科夫: 从普遍共识角度来看,AI是一个关注于执行类似人类能力的技术的领域,包括从认知到语音、视觉以及物理运动。因此机器人学是AI的一个子集。值得注意的是,麦克卡尼最初创造了这个词,因为他想创造和替代控制论领域,主要是因为他不喜欢Norbert Wiener。
《时间线》:在您的《与机器人共舞》这本书中,您为我们呈现了另一个概念,IA(智能增强)。您能为我们详细解释一下IA吗?
马尔科夫:智能增强,即IA,是在20世纪60年代由计算机科学家Douglas Engelbart创造的。Engelbart后来还发明了直到现在我们仍在电脑和网络上使用的电脑鼠标,超文本和其他技术。在提出智能增强一词时,他打算使用各种基于计算机的技术来帮助知识工作者更有效地进行工作。
《时间线》:关于AI与IA的发展关系,您认为它们之间是互斥的还是互相支持的?
马尔科夫:AI与IA的关系是分歧并悖论的。悖论的原因是如果你增强人类智能,意味着你可能需要较少的人类去处理某个任务。我着手写《与机器人共舞》就是为了探索这两个在过去半个世纪都没有任何联系的截然不同的计算机世界。面对这个挑战,我认为的解决办法即是以人类为中心的工程设计。
人机关系与机器人犯罪
《时间线》:人机关系一直是很有争议的话题。在您看来最合适的人机关系是怎样的?您是否同意《人工智能时代》作者Jerry Kaplan教授提出的AI可能会加剧财富分配不均的观点?
马尔科夫:计算机科学家Alan Kay曾说,我们可以选择去设计那些系统作为我们的奴隶,合作伙伴或主人。(他这番话来自黑格尔。)我也赞同通过设计那些可以充当工作同伴的系统来作为解决办法。至于Jerry Kaplan先生提出的关于技术产生更大的财富不平等的观点,我认为相关的证据和情况是复杂的。我看到有一些情况和趋势是反映了他的观点,但是另一些情况确实是与其相背离的。
《时间线》:在机器帮人们解决很多问题同时也意味着人类在逐渐被机器简化。例如现在人们使用的智能手机将很多复杂程序简化,用户不用思考太多的操作流程,只要几步简单的操作就可以掌握它的功能,以至于帮助人们解决很多问题。您认为智能机器的“思维”是否会使人类智慧“退化”?
马尔科夫:不得不说这确实是个问题,这事关我们怎样设计那些会与我们产生相互作用及相关性的AI。比如说,可能通过使用AI去增强一个医生的决策能力和诊断能力。或者,相反地,可能在AI的协助下使有较浅资历和能力的医生助手来替代医生。哪个是正确的选择呢?我想这是很难决定其一的,但它确实是一个社会选择。
《时间线》:现在人们最直观的AI感受除了智能手机外就是目前大热的无人驾驶汽车,但是近期特斯拉无人驾驶汽车车祸死亡事故将安全问题推向舆论风口浪尖。关于最后的追责问题引起人们关注,您如何看待这类问题?在未来,机器人犯罪是否会成为重要的伦理问题之一?
马尔科夫:完全无人驾驶要比欧洲、美国、亚洲的工程师所认为的无人驾驶挑战更大。来自技术和监管的挑战使得设计者需要比想象中更多的时间来设计完全无人驾驶系统。关于完全无人驾驶的责任认定问题,最简单的答案就是责任归属制造者。我认为AI技术将很快被滥用,正如现如今我们使用的相关计算机技术被滥用一样。或许,在未来,语音合成将很可能成为社会工程攻击人类诚信的武器。
人工智能全球化与产业革命
《时间线》:自集成电路发展开始,摩尔定律成为科技发展的默认趋势,但是似乎自大数据、云计算、AI等出现后,摩尔定律在逐渐被打破,您如何看待这种情况?对摩尔定律的突破是否也意味着科技发展的新形式?
马尔科夫:摩尔定律的影响现在是失速的。登纳德缩放比例定律(关于处理器时针速度的指数增长)终结于2006年,并且单个晶体管成本的下降终结于2014年。这意味着始于1965年的“搭便车效应”现在已经终结了。我不知道制造技术在未来是否有新的突破,但是目前还未发生什么。这也不意味着计算机进程正在结束,只是未来可能更多的是依赖人类的创造力。
《时间线》:随着技术的进步,AI技术已经成为部分国家的战略发展,从德国的工业4.0到中国的互联网+,AI全球化成为必然趋势,但这一趋势也毫无疑问地在挑战着目前的发展模式,您认为AI的爆发是否会彻底颠覆人类发展成为新一次的产业革命?
马尔科夫:不,我认为不会的。AI本质是一种技术,就像汽锤或卡车一样。在任何社会中,它既可用来增强人类能力但也可取代人类。但这依赖于如何使用和部署AI技术。
《时间线》:AI和智能机器人的渗透已经开始在影响人类生活了,我们看到在部分行业中,部分职业已经被机器人取代,同时因为AI的出现也衍生出不少新的行业,您认为这一变化是否在预示着AI对产业结构的改变?人类的工作真的会被智能机器抢走吗?您认为人们应该如何应对这一变化?
马尔科夫:AI和机器人的到来要比其狂热者所认为的慢很多。这些技术在被演示的时候表现得非常好,但是目前有些技术在现实生活中仍有些不切实际。一些支持者认为,技术的快速发展在未来将是继续的趋势,但是事实上有些证据却表明速度是慢了下来,而不是持续加速。对于AI和机器人的到来,我认为在许多社会中,特别是那些正在加速成熟的国家,例如中国,如果机器人来得及时,那么对于这些国家来说将是很幸运的。
中国竞争
《时间线》:您能否简单对比下美国AI发展与中国AI发展,有何相同点和不同点?您对中国的AI技术和智能机器人的发展有何看法?对中国的企业家有何建议?
马尔科夫:由于贵国政府没有允许我作为一个报道者在贵国工作,所以很抱歉我的观点很有限。不过,有证据表明,中国正在快速追赶美国的创新能力。但是我还没有见到中国计算机科学家和工程师有根本性的突破,大部分都还只是渐进式的发展。
《时间线》:目前中国经济和科技在面临一次新的转型,中国逐渐在由“中国制造”转变为“中国创造”,您认为AI的爆发对这一转型会产生怎样的影响?
马尔科夫:我认为“中国创造”是一个目标。当新奇的中国技术出现,或是源自中国想法而不是复制美国而产生的新技术平台出现时,那将会非常有意思。

8. 如何看待人工智能的发展趋势论文

人工智能在当代社会已经是一个不可阻拦的发展大趋势,而且人工智能的影响和运用也深入到了社会生活等方方面面,对人类的衣食住行产生了巨大的改变,同时也在改变着传统或者现代的产业结构和人员配置。人类生活的各个行业例如农业、体育、医疗卫生、制造业、律师行业、记者和编辑行业等领域都已经在或者将会在未来深入使用人工智能技术,这对于未来世界的改变是巨大而且无法想象的。在未来几年内,机器人与人工智能能给世界带来的影响将远远超过个人计算和互联网在过去三十年间已经对世界所造成的改变。人工智能将成为未来10年内的产业新风口,像200I安钱电力彻底颠覆人类世界一样,人工智能也必将掀起一场新的而且持续深入的产业革命。但是事情的发展总是两面性的,人工智能的发展和百年前的工业革命一样将会在很大程度上造成劳动力的转换,在这个过程中,将会出现一系列的问题,而这些问题很有可能成为阻碍人工智能继续发展的巨大阻力。人工智能领域的最新发展对科技变化的促进作用可能会以两种基本的方式搅乱我们的劳动市场。首先,大部分自动化作业都会代替工人,从而减少工作的机会,这就意味着血药人工作的地方变得更少,这种威胁显而易见,也很容易度量;另外,很多科技进步会通过让商家重组和重建运营的方式来改变游戏规则,这样的组织精华和流程不仅经常会淘汰工作岗位,也会淘汰技能。但从总体上来说,人工智能所带给未来人类世界的好处是要大于其弊端的,而且在未来人类生活的理想蓝图中,人工智能也会发挥着很大的作用和推动力,这是一个必然也无法阻止的趋势。