『壹』 大数据时代个人隐私数据如何保护

无论是个人下载app、注册个人账户,还是公司用的软件产品、数据云,尽可能选择大公司的,有一定品牌保证的。
比如腾讯系、阿里系、网络系的产品,尽量避免使用不知名公司的软件产品。

『贰』 大数据时代,我们该如何保护自己的隐私

谈到隐私保护的问题,我们首先要明确什么是隐私。从法理角度来讲,隐私是已经发生了的符合道德规范和正当的而又不能或不愿示人事或物、情感活动等。除却我们的私人账号和密码,浏览记录、聊天记录甚至购物记录都是隐私范畴之内。具体而言,保护用户隐私安全应该从几个方面下手:
首先,隐私保护要将隐私知情权,决定权交还给用户本人。绝大多数互联网应用将用户使用权和隐私获取强行绑定在一起,不同意隐私条款就不能使用应用,堪比“霸王条款”。要知道对很多功能来说,隐私数据只是可有可无的角色。
第二,不能将隐私保护建立在道德自律基础上。隐私保护需要的是可靠手段,如法律、程序等等,需要利用强制力保护隐私,而不能仅仅依靠信用和道德。隐私就是“钱”,用信用道德去约束利益诱惑显然并不是明智之选,强制力管理隐私的效率明显会更高。
第三,要找到安全、可靠且高效的途径利用隐私数据。解决隐私问题并非毫无办法,受益于密码学的发展,隐私数据可以通过密码学的加密手段避免泄露,目前市面上已经涌现出不少针对隐私安全的解决方案,如链飞科技推出的隐私数据存储应用WingChainDB和针对隐私数据多方协作的WingChainDX,都能够实现隐私数据保护的功能。

『叁』 大数据时代的用户数据如何区别保护

大数据时代的用户数据如何区别保护
大数据时代,是物联网的时代,随着云存储和云计算的发展,以智能手机、智能家电、可穿戴设备为代表的智能终端的普及,通过各种智能终端上传和收集的用户数据将越来越多,对用户数据的分析和挖掘及利用,将是大数据的商业价值所在,蕴藏和巨大价值的用户数据的性质及使用规则是我们值得思考的问题。
用户数据的“区分所有权”构想
提到用户数据,我们首先想到的是用户的“隐私权”。民法大家王利明教授在其主编的《人格权法新论》一书中提到:隐私权是自然人享有的对其个人的与公共利益无关的个人信息、私人活动和私有领域进行支配的一种人格权。可见隐私权是一项“个体”权益,强调权利的身份和人格的属性。
用户数据的商业价值核心并不是“个人”的人格权益,其必要条件是具备足够多的用户个体样本,其更强调“集合”的权利,单个用户数据的商业价值是有限的。而用户数据的核心价值在于通过对云端存储的海量的用户个人状况、行为、需求的样本分析和挖掘,一方面为上游硬件商提供产品的开发依据,另一方面对用户的消费、生活提供“量身打造”的服务,从而形成物联网的全产业链循环,实现更高效的管理社会资源并创造更多的价值。
可见,虽然用户数据来源于“个体”数据,但最终使社会获益的是用户的“集合”数据。因此,在界定用户数据的性质方面,笔者建议根据单个数据是否具有身份属性,将用户数据分为身份数据和样本数据,并对这两类数据加以区别保护。
用户的身份数据是指可以通过单一的个体数据,即能锁定特定用户的数据。如姓名、身份证号、各种账号信息、联系方式等。比如我们通过一个电话,就能联系到一个特定的用户。因此,此类信息具有较强的身份属性,须定义为“隐私权”的范围,其权利主体应为用户个人所有,其使用和经营,须经过用户的许可,否则将被判定为侵权。现行法律法规如《全国人民代表大会常务委员会关于加强网络信息保护的决定》、工信部出台的《电信和互联网用户个人信息保护规定》以及消费者权益保护法、《网络交易管理办法》中规定的个人信息,当属于用户的身份数据范畴。
样本数据是指通过个体数据汇聚成的用户个人状况、行为、需求的数据库以及通过分析和挖掘以上数据获得的相关数据。此类数据的所有权应为用户和数据收集方共有,但经营使用权建议应掌握在能够发挥其价值的数据收集者手中。将所有权和经营权区分开来,既能从法律上保证用户的个体权益,又符合经济学的原理。
样本数据的经营规则
用户身份数据的使用规则可以依据现有的法律法规执行。我们仅需要通过立法明确以上法律所适用的数据的范围,并在执行层面的政策上制定可操作的保护用户身份数据和隐私权的规章制度。
对于样本数据的使用和经营规则,现有法律并没有明确依据。根据上文的阐述,笔者已将其所有权拟定为用户和数据收集者共有,经营使用权则建议应掌握在能够发挥其价值的数据收集者手中。这样设计的目的在于,一是保留用户的“被遗忘权”;二是发挥物尽其用的作用。
首先,保留用户的“被遗忘权”是用户数据使用的基础。
大数据时代到来,人们最担心的是自己将被暴露得一览无余,没有隐私可言。因此,个体信息是否公开,公开的程度,需要个体能够掌控,即用户自主决定其向外界公开的个人信息的广度和深度,也可随时自行或要求收集数据方,删除其掌握的任何关于用户个体的数据。用户要求收集者删除其样本信息时,须提供可以辨识其个体信息的依据(一般须为身份信息),以证明其要求删除的信息是属于自己的样本信息。
其次,数据收集者在收集样本数据时,须向用户群体公示其收集途径和方式,以及用户删除自己样本信息的途径和方法。只有这样,用户才能知晓其被收集者收集的数据是什么,以及自己的样本信息被经营者使用的状况是否安全,从而判断其是否愿意继续使用数据收集者的产品,并将自己的样本信息交给数据收集者经营。一旦用户选择使用某一数据收集者的产品,数据收集者将与用户共有其收集的用户样本数据。
第三,数据收集者在遵守法律对用户隐私保护前提下,无需用户授权,可自由地使用和经营其收集到的用户的样本数据,直至用户自行或要求其删除样本数据。
当前,各数据收集者之间进行不同程度的共享和授权数据的需求已是大数据的发展趋势。云与云的互联互通才能使数据样本变得足够庞大,使数据分析和挖掘的结果更有价值,使用户不同智能终端之间的连接变得可能,从而真正的实现大数据的物联网。
样本数据的共享和授权中涉及到大量个体信息,如果用户此类活动需要经过个体用户的授权,将会极大地阻碍商业效率,其数据和信息的收集是随时随地的,要求单个用户对单个的样本授权,也会影响用户的体验。因此最现实的方式是数据的收集者在经营和使用其收集的数据时,无需个体用户的单独授权。
最后,数据收集者通过样本数据所获取的收益,个体用户须有分配权。
个体用户对数据经营的收益分配权容易理解。数据的源头是个体,个体是样本数据的所有者,因此其理所应当得到经营数据的利益。分配的方式和数量可由数据收集者确定并公示,一旦用户使用特定数据收集者的产品,即表明其同意以此对价获取收益。当然,用户领取收益的前提是提供可以辨识其个体信息的依据(一般须为身份信息),以证明其是对应个体样本数据的提供者。

『肆』 大数据时代,个人信息如何保护

大数据时代,个人信息如何保护
随着大数据应用领域不断涌现新风口,数据合规话题讨论迅速升温。在日前举行的“2017大数据合作与合规峰会”上,中国社会科学院法学研究所所长陈甦表示,互联网、大数据、人工智能等信息技术正在引发新一轮科技革命,数据已成为国家基础性战略资源。大数据合规、用户隐私保护备受瞩目。
近年来,大数据在广告、金融、医疗、出行、人工智能等领域的广泛应用,不仅推动了政府、企业、社会组织等的数字化转型,也使人们的生活变得更加智能化、便捷化。据预测,中国大数据产业市场未来5年内,仍将保持高速增长,到2020年,大数据产业规模将接近5万亿元。
大数据的技术发展与物联网、云计算、人工智能等新技术领域的联系将更加紧密。如何切实保护用户权益、促进数据合规运用、建立公平有序的竞争环境,已成为摆在数据合规发展面前的问题之一。
2017年9月,微信、京东商城等10家互联网产品和服务的企业共同签署了个人信息保护倡议书,承诺尊重用户知情权和控制权、遵守用户授权、保障用户的信息安全、保障产品和服务的安全可信、联合抵制黑色产业链、倡导行业自律、接受社会监督等。
腾讯集团法务副总裁江波表示,坚持“开放透明、用户控制、数据安全”的隐私保护原则,需要通过设计保护隐私,在切实保障用户数据安全的基础上,不断提升数据安全保护水平,规范大数据使用。
大数据是新时代的新型财富和资源。在数字经济的浪潮中,网络商品交易和服务、消费者权益、个人信息保护、数据争议、网络侵权等方面出现了一些新情况、新问题。对此,专家分析认为,要加快推进完善数据领域立法、提升监管执法效率,优化行业自律标准,构建大数据安全依法有效的保障制度。
中国法学会网络与信息法学研究会副会长周汉华表示,大数据、人工智能迅猛发展的过程中,企业之间的数据共享问题、数据控制者与数据主体之间的合规问题逐渐显现,对大数据产业的持续发展带来诸多挑战。
政府、行业、企业多方协作和共同努力为数字经济发展保驾护航,成为大数据时代发展的必然趋势;保障数据安全、规范数据使用,成为大数据时代行业发展的共识。
为落实《网络安全法》对个人信息保护的相关要求,中央网信办、工信部、公安部、国家标准委等四部门组成专家工作组,对微信、淘宝等10款网络产品和服务的隐私条款进行了评审,规范收集、保存、使用、转让用户个人信息的行为。
“此次隐私保护专项评审工作中,隐私条款透明度增强、用户选择权增多成为亮点。”中国电子技术化研究院副院长杨建军介绍,10款产品和服务在隐私政策方面均有不同程度提升,均做到明示其收集、使用个人信息的规则,并征求用户的明确授权。
目前,高效、流程化的数据合规管理对企业的实践提出更高要求。这包括建立隐私事务管理部门、规划数据保护战略、制定隐私政策程序和指南等方面。业内人士认为,在系统和程序设计中考虑隐私保护,开展隐私影响评估等工作,可以让隐私保护置于“前端”。在产品初期加入隐私保护理念,后期通过持续的监督和评估,巩固全生命周期管理策略。
加快建设数字中国,对于大数据的监管也需要新的思路。“如何切实保护消费者权益、促进数据合规运用、建立公平有序的竞争环境,需要带有审慎包容的态度,及时应对大数据领域的变化。”

『伍』 大数据的保护比挖掘更重要

大数据的保护比挖掘更重要

面对大数据所蕴含的巨大价值,我并不担心其商业价值挖掘不出来,担心的是如何把握好商业挖掘的尺寸与公民隐私权之间的关系。今天,大数据的商业化已经形成。当我们通过PC登录或者访问了相关的网站,浏览了某些信息的时候,我们在电脑上的这种行为都将被记录下来。当我们再次登录一些网站,打开相关页面的时候,一些“牛皮癣”广告就会被推送到我们的眼前。

那么,有谁在推送这些“牛皮癣”广告的时候征求过用户的意见?追踪用户使用行为的商业挖掘边界到底在哪里?这些问题或许比当前推动大数据商业挖掘来说更为重要。

首先,从目前的实际情况来看,大数据商业的前端很繁华,而商业后端的法律法规则相对滞后。过度的商业化挖掘,如果在没有相关隐私权保障的情况下发生,必然会招致用户的反感。那么,商家到底应该将数据商业化到什么程度,这个尺度如何把控,也就成为当前有关部门着重关注的焦点问题。

其次,对于企业来说,哪些数据是可以挖掘,哪些数据在商业化中是不能挖掘的;对于行政部门来说,什么部门可以拥有什么样的数据使用权限……这些都存在着关键尺度问题。如果相关法律法规和政策能够及时出台,那么公民隐私安全问题就可以缓解很多;反之,如果这个指导规范一直出不来,那么公民隐私就很危险了。

尤其是在智能穿戴时代的万物数据化之后,包括人的一切行为与生命体态特征都被数据化,网络安全、数据安全,就是摆在眼前最急迫、最重大的事情。可以预见,在进入智能穿戴时代,人与物,人与互联网之间的识别关系一定不是当前的这种数字密码,而是更为复杂的生物识别技术,如步态、静脉、视网膜、心率等,借助于可穿戴设备将人与设备连接、绑定在一起。由此通过人的生理特征识别后,建立一种唯一性的身份识别特征和独一无二的ID。

显然,这种识别特征的建议就相对比较安全,尤其是对于金融系统来说,未来的支付就很安全,一旦你的设备被偷了,离开你就自动失效了。深度数据化背后的商业价值将随之放大,而同时被放大的,还有数据安全风险。不过,我们不能因为大数据的安全存在风险,就让科技发展的脚步停下来。

我们需要谨慎地对待数据安全,但亦非谨小慎微。就像我们知道网络网银不安全,但我们还是会谨慎地用,此时对于银行等机构来说就是如何通过技术来最大限度地保障用户财产安全;我们知道美国枪支泛滥,但很多人依然很“向往”美国,此时对于美国政府来说就是如何通过法律法规来杜绝这些案件的发生。面对大数据也是如此,需要政府提高监管的水平和方式,尽可能地把犯罪的风险系数和危害降到一个合理的范围。当然社会上总有一些人想着赚歪门邪道、旁门左道的钱,这就是需要政府作为的问题,怎样有效控制。尽管目前我们还没有完全进入大数据时代,但相关的弊端、问题与安全风险已经或多或少地初露端倪。

随着国务院关于大数据文件的出台,一方面会加速大数据产业的形成,也必然会加速商业价值的挖掘。但是在这个过程中,我们尤其不能忽略了对公民隐私权的重视。所以,发展大数据产业很重要,但对于公民来说或许保护比挖掘更为重要。

以上是小编为大家分享的关于大数据的保护比挖掘更重要的相关内容,更多信息可以关注环球青藤分享更多干货

『陆』 大数据时代:如何守护我们的数据安全

大数据时代:如何守护我们的数据安全
不管你承认不承认,我们已经全面进入了大数据时代。无时无刻,我们的很多信息都被通过各种途径传播出去,这就必然导致安全问题的产生。
大数据的安全问题有多严重?在此前举办的“2016中国大数据产业峰会”上发生的一个实例,就可见一斑。
在360展区,市民严女士随手将钱包、手机放到安检筐里,空手走过安检门。她通过安检门,突然发现大屏幕上显示出自己银行卡的姓名拼音、身份证号、银行卡号、卡片有效期、最近10次的消费时间、消费地点、取现记录、转账记录等等。严女士惊呼:“遇到了魔术师”。
360安全专家刘洋解释,实际上,存放手机钱包的安检筐里存有一张具有NFC(近距离通信)功能的无线读卡器,旁边还有配套的信号接收器和电脑等设备,就像公交车刷卡器,只要银行卡靠近读卡器,卡片的信息就显示出来,安检门其实就是“安全魔术师”手中的障眼法。就在严女士将钱包放进安检筐的那一刻,严女士的个人信息就已经泄露了。
那么,我们靠什么来保障我们的数据安全呢?难道我们只能看着个人的数据和隐私到处泄露吗?
数据安全事件日益高发
近来,大数据安全事件呈高发之势。日前,广东警方破获一起高科技经济犯罪案件,17岁的“黑客”叶世广,攻破了多个商业银行网站,窃取了储户的身份证号、银行卡号、支付密码等数据,带领一批人在网上大肆盗刷别人的信用卡,涉案金额近15亿元,涉及银行49家。
今年2月,发生了世界上有史以来规模最大的网络盗窃案。黑客入侵了孟加拉国央行在纽约联邦储备银行的账户,盗走了8100万美元,后来孟加拉国官方表示,黑客出现了一个拼写错误,否则随后还将进行一笔近10亿美元的转账。
今年3月,与叙利亚有关联的激进黑客组织对一个自来水厂发起网络攻击。黑客操纵系统改变了进入到自来水中的化学物含量,阻碍净水过程。
类似的案例不胜枚举。
360公司总裁齐向东向《中国科学报》记者表示,接入互联网的设备越多,网络攻击的发生几率就越高,网络攻击首先瞄准大数据,攻击造成大数据丢失、情报泄密和破坏网络安全运行。大数据技术是一把双刃剑,既可以造福社会、造福人民,又可以被一些人用来损害社会公共利益和民众利益。
大数据安全体系构建势在必行
“在互联网乃至物联网时代,如果我们不能很好地解决安全问题,就会影响社会各方面的发展。因此,各级政府在鼓励发展大数据的同时,要同步考虑构建大数据安全体系。”齐向东表示。
值得注意的是,传统的网络安全思路已经无法保障大数据时代的安全。刘洋向记者介绍,传统网络安全的防护思路是划分边界,将内网、外网分开,业务网和公众网分离,用终端设备将潜在风险隔离。通过在每个边界设立网关设备和网络流量设备,来守住“边界”,以期解决安全问题。但随着移动互联网、云服务的出现,移动终端在4G信号、Wi-Fi信号、电缆之间穿梭,网络边界实际上已经消亡。
“很多传统的大企业认为,只要自己购买服务器并搭建独立的机房,安排专门的技术人员就能够保护企业的数据不被泄露,能够保护企业的信息安全。但实际上,在如今的互联网时代,这种传统的方法更加容易被不法分子所攻破。”阿里云安全资深总监肖力向《中国科学报》记者介绍,这是因为从技术实力来看,绝大部分企业并不是专门做网络安全、数据安全,其设置的技术壁垒难以阻挡专业的黑客。
齐向东介绍,360安全中心每天发现木马样本近千万个,每天发现的各种软硬件漏洞、网站漏洞超过120个,“每一个木马每一个漏洞,都可能攻破预先部署的安全设备和安全软件”。这种情况下,企业的传统防护的确难以奏效。
云平台和大数据需“双剑合璧”
在采访中,有专家认为,对付大数据时代的数据安全问题,防止信息泄露,除了完善相关法制法规,更加需要云平台的防护技术,结合大数据技术来应对数据安全。
“在云计算不断深入发展的当下,将数据存储在云平台上,或许比传统的企业信息防护更加安全。”肖力介绍,以阿里云为例,阿里云在架构设计之初就同步考虑了安全架构,不仅将安全的基因植入到整个云平台和各个云产品中,也将数据安全要求嵌入产品开发生命周期的各个环节。依靠专业的云计算平台,强大的技术团队能够更好地应付来自黑客的攻击。
不同用户之间,无论是CPU、内存,还是存储和网络,都默认相互隔离,既看不到对方的数据,也不会相互影响。“就像一间五星级酒店被分割成多个房间,他们之间是相互独立和封闭的,从而确保不同租户互不干扰和数据隔离。”肖力表示。
据介绍,目前全国35%的网站的数据安全防护都依托于阿里云平台的防护。阿里云的云盾,涵盖网络安全、服务器安全、数据安全、业务安全和移动安全这五个安全领域,来保护数据安全。
360也有自己的云安全管理平台。刘洋介绍,该平台将360独有的云安全漏洞挖掘能力输出给广大用户,通过统一管理、安全可见以及网络、主机、应用、数据的分层纵深防御,为用户全面解决云安全问题。
“用大数据技术来解决大数据时代的安全问题十分必要。”齐向东进一步指出,必须建立“数据驱动安全”的思维,搭建全新的互联网安全体系—“传统安全+互联网+大数据”。也就是说,要利用漏洞挖掘技术、网络攻击技术、软件样行为分析技术以及由网络地址解析数据库、网络访问日志数据库、文件黑白名单数据库等组成大数据系统与分析技术,构建全天候全方位感知网络安全态势。“要基于强大的大数据库、利用先进的大数据技术和广泛的用户覆盖率,提前感知网络威胁态势,为大众提供未知威胁的发现与回溯功能并进行有效防护。”齐向东说。
“未来还应当联合各方力量,共建互联网安全产业链生态,来应对大数据时代的安全风险。”肖力表示。