大数据火爆的原因
㈠ 简要描述大数据产生背后的技术原因急!
大数据技术的发展,历经了多个阶段,而真正大数据技术开始成熟,是来自于专Google在2004年提出了的分布式数据系统(属Google file system,GFS)、分布式计算系统MapRece和分布式数据库BigTable,基于这套体系,大数据处理技术开始走向成熟。
2014年以后,整体大数据的技术栈已经趋于稳定,由于云计算、人工智能等技术发展,还有芯片、内存端的变化,大数据技术也在发生相应的变化。
最早大数据生态没有办法统一批处理和流计算,只能采用Lambda架构,批的任务用批计算引擎,流式任务采用流计算引擎,比如批处理采用MapRece,流计算采用Storm。
后来Spark试图从批的角度统一流处理和批处理,Spark Streaming采用了micro-bach的思路来处理流数据。近年来纯流架构的Flink异军突起,由于其架构设计合理,生态健康,近年来发展特别快。而Spark近期也抛弃了自身微批处理的架构,转向了纯流架构Structure Streaming,未来霸主还未见分晓。
㈡ 为什么大数据如此重要
大数据是一种现代云基础架构,它包含了多种与其他人连接和共享信息的方法。它推动了“物联网”的发展,如通过社交网站连接人、通过共享朋友或网络来寻找人们之间互相认识的可能性。大数据的背后运行着人工智能,而它对于大多数人而言是完全透明的,人们不知道背后有这样的技术。大数据位于人们日常使用的智能手机之后,然后人们通过它给移动互联网贡献信息,即使他们并没有意识到这一点。
为什么大数据如此重要?
第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。
总结
在大数据时代到来的时候,要用大数据的思维去发掘大数据的潜在价值。大数据的意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。从前我们所了解的数据是冷冰冰的、死气沉沉的,被存到冷备份默默地等着人拿出来用,我们对待数据的感觉十分消极,要先想清楚其用处才开始分析应用。现在,数据时代来临了,人们正在试图点燃数据,使其变热,赋予生命。所谓“活数据”,是动态的数据,流通的数据,因互动而产生,因产生而互动,是自然演化的数据,要用大数据的思维去考虑这些数据怎样才能带来效益。未来大数据的发展前景非常好,与大数据相关的职业比如数据挖掘师,数据分析师等必定会有广阔的发展空间。
㈢ 大数据是什么为何会如此热门
大数据(big
data),或称海量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
4V特征:Volume(大量)、Velocity(实时)、Variety(多样)、Value(价值)。
大数据已经成为各类大会的重要议题,管理人士们都不愿错过这一新兴趋势。毫无疑问,当未来企业尝试分析现有海量信息以推动业务价值增值时,必定会采用大数据技术。
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。大数据(Big
data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
㈣ 企业需要大数据的原因有哪些
1,企业领导层对大数据的认知
随着时代的变迁,商业模式已经发展过度到了数据时代,相较于以前营销为王的商业模式,大数据更能给现代企业创造价值,正所谓火车跑的快,全靠车头带,企业各部门领导者,甚至是老板本人,能对大数据应用有一个正确的认识,则更能把握企业发展前进的方向与命脉。
2,公众才是企业的决策者
在中国,许多的企业都是一人掌天下,老板往往把握着企业的命运和未来,但在大数据时代里,企业将慢慢树立以社会公众为决策主体的观念,决策的理念由狭隘的企业领导层转移到社会公众上,通过媒体、社交网络等平台收集社会公众的意见和观念,形成内外双向的大数据挖掘和分析,以提高决策的广泛性,合理性,正确性。
3,打造好信息化的基础,才能挖掘积累出大数据库
企业以信息化为基础,才能实现大数据挖掘,积累和分析,企业所有的产品数据、运营数据、供应链数据和外部数据都是来自于信息化系统,因此打好信息化基础就变的尤为重要了,完善信息化基础,让数据来源更真实和可靠。
4,便捷高效的大数据分析系统
大数据是一个海量的资源池,甚至如汪洋大海一般让人望而生畏,那么这样一个海量的资源池,企业怎样才能充分且高效的去吸收它的营养呢?这就需要一个高效率的云计算系统才能很好的完成这个任务,一个高效的云计算系统,可以使大数据里的资源合理分配,充分利用,给且的分析研究部门带来便捷,让工作效率得到显著的提升。
在未来大数据将成为最重要的经济资产,谁掌握了它便是掌握了竞争力,企业应与时俱进,敞开胸怀迎接大数据,重视大数据,利用大数据,在茫茫商海,乘风破浪,驶向远方。
㈤ 什么是大数据,大数据为什么重要,如何应用大数据
毫无疑问,各行各业因为大幅爆发的数据而正变得蒸蒸日上。在这年中,几乎所有行业都或多或少的受到这一巨变的影响。科技渗透到各个领域,并且已经成为每个处理单元的必要元素。谈到IT行业,具体来说,软件和自动化是最基本的术语,并且用于处理循环的每个阶段。
相较于稳定性而言,企业更关心的是敏捷性和创新性,通过大数据技术,可以帮助公司及时实现这一愿望。大数据分析不仅使企业能够跟随瞬息万变的潮流而不断更新,而且还具有预测未来发展趋势的能力,使企业占据有竞争力的优势。
让我们找到行业广泛采用大数据的原因:
1.大数据是企业核心竞争力,也是公司的软实力
大数据席卷了全球,并带来了惊人的利益,这一力量无需多说。大数据使IBM、亚马逊等全球顶尖公司受益,这些公司通过利用大数据开发一些前沿的技术,为客户提供高端服务。
“采用大数据,云计算和移动战略的企业发展状况超过没有采用这些技术的同行53%。”——《福布斯》
在戴尔开展的一项调查中显示,采用大数据、云计算以及移动战略的企业中,优势更加明显,也就是,这些企业中有53%采用大数据起步较晚或者尚未采用,在这一结果令人惊讶不已。
虽然大数据尚处于初级阶段,但通过在处理过程中,融合这一理念,将为企业赢得50%的利润。显然,在如今的商业中,大数据显现的惊人优势并不亚于石油或煤炭带来的利益。
2.掌握数据能力,开采“暗数据”
全球著名的咨询公司Gartner公司对黑暗数据的定义是“组织在正常业务活动过程中收集、处理和存储的信息资产,通常不能用于其他目的”。
然而,大数据系统的出现使得这些公司能够将尚未开拓的数据投入使用,并从中提取有意义的信息。过去没有被认可或认为毫无用处的数据突然成为公司的财富,这一点令人惊讶不已。通过大数据分析,这些公司可以加快流程,从而降低运营成本。
3.软件正在吞噬整个世界数据争夺战正在打响
我们目前处于数据驱动型经济中,如果无法分析当前或未来的趋势,任何组织都无法生存下去。抢夺数据已经成为决定下一步行动方案的关键。
客户逐渐成为所有组织的焦点,对于及时满足客户的需求这一任务非常迫切。只有在强大的软件支持下,业务战略才有可能会支撑和加速业务运营。这最终促成了强大的大数据技术的需求,可以以许多方式使组织受益。
4.决策指导更智能更快速更精准
在这个激烈的竞争时代,人人都想脱颖而出。但问题是如何实现这一期望?虽然公司与竞争对手持有相同的运营模式,但公司应当如何展现其独一无二?答案在于公司采用的策略。为了表现优于竞争对手,做出良好和智慧决策的能力在每一步中发挥关键作用。这些决定不仅应该是好的决定,而且应该尽可能做出又快又明智的决定,使公司能够在积极的主动出击。
将大数据分析纳入流程的做法揭示了非结构化数据,从而有助于管理者以系统的方式分析其决策,并在需要时采取替代方法。
5.以用户为中心用户行为数据是营销关键
现在客户有机会随时随地购物,在相关信息帮助下,对于公司需要做出比之前更敏捷的反应这一要求而言具有更大的挑战。但是公司将如何不断地实现这一点呢?答案是借助“大数据”。客户动向是不断变化的,因此营销人员的策略也应该做出相应调整。通过整合过去和实时数据来评估客户的品味和喜好,这样可以使公司采取更快捷的应对措施。
例如,亚马逊通过利用强大的大数据引擎的能力,从一个以产品为基础的公司发展成为囊括1.52亿客户在内的大型市场参与者。亚马逊旨在通过跟踪客户的购买趋势,并为营销人员提供他们即时需要的所有相关信息,从而来为客户服务。此外,亚马逊通过实时监控全球15亿种产品,成功满足了客户的需求。
6.通过利用数据仓库使数据资产变现
这些公司越来越大,因此不同的流程产生不同的数据。资料仓储中的许多重要信息仍然无法访问。然而,公司已经能够使用大数据分析这一武器来挖掘这座大山,让分析师和工程师深入研究,并提供新颖而又有意义的见解。
经过这番分析,有一件事值得肯定的是,这是一个高度数字化和技术驱动时代的开端,并伴随着强大的实时大数据分析能力。
㈥ 大数据现象是怎么形成的
大数据是无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数专据集合,是需要属新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
(6)大数据火爆的原因扩展阅读
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。
大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
㈦ 我国推进大数据产业发展的原因是什么
随着新一轮的信息技术与产业、经济和社会的深度融合,大数据日渐成为社会发展的战略性资源。围绕“融合”“开放”“安全”等趋势,中国正在不断加快推动大数据产业的创新发展。
伴随着中国经济发展进入新常态,无论是保持中高速增长还是面向中高端水平,以及打造大众创业万众创新的新发展环境,大数据、云计算、移动互联网等新一代信息技术及其相互作用发展都将充当越来越重要的角色,并且已经成为世界发达国家科技和产业界竞相发展和竞争的焦点,在社会发展中担当着基础性、先导性、战略性地位。
中国政府将更好利用互联网、大数据、云计算,为大众创业、万众创新提供平台服务,推动经济提质增效升级和培育经济增长新引擎;促进政府转变职能,推动法治政府、服务政府、阳光政府、廉洁政府建设,提升治理能力和服务水平;不断提升公共服务能力,建设信息共享、公平普惠、便捷高效的民生服务体系,更好保障和改善民生。
实际上,如何发展大数据已经成为国家、社会、产业的一个重要话题。目前,欧美、日韩等国已经将大数据上升为国家层面的战略。业内人士指出,作为一种重要的战略性资源,大数据未来的发展需要进一步依靠云计算、物联网、移动互联网等新兴计算形态和分析方法的技术创新与发展,同时也面临隐私保护、网络安全的挑战。
可以期待,未来随着中国大力推动大数据与产业和公共服务的融合,大数据的商业价值和社会价值会得以充分开发,将有效促进产业提质增效升级,推进政府治理和公共服务能力和水平。
㈧ 大数据在今天这个时间点上爆发的原因有哪些
为如今互联网发展特征的大数据,在以云计算为代表的技术创新大幕的衬托下,让那些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值,因此兴起了“大数据”热。
关于大数据的学习,线下学习费用高昂、地域限制,建议选择线上平台。如今线上学习无论是就业还是教学均已完善。大数据开发技术让大数据成为了2017年移动互联网追逐的热点。也引得很多领域外的人才纷纷转投于大数据开发领域,扣丁学堂具有完整系统的大数据开发培训视频教程,顶级行内大牛为学员们设定了可视化的学习线路直通车,让没有学习方向的学子一目了然,最快的进入大数据领域大门。
㈨ 现在大数据这么火,为什么身边一些学统计的本科
当我们在谈大数据的时候,我们在谈论什么?大数据产业火爆的背后,有着深厚的利益驱动性,于是各大商家与企业纷纷趋之若鹜,想要窥尽大数据背后被遮掩起来的财富。毫无疑问,变现,是大数据火爆的背后原因。
大数据被潮流所接受,皆因它能够带来进步与利益
纵观古今,博览中西,能够经历历史的洗刷而留存下来的精粹,都是能经得住各种考验的东西,都是能够真实满足人类各种需求的东西。这些“东西”,要么是从物质上说能给人类带来利益的——如农业、手工业、商贸等;要么是从情感上说能够给人类带来快感的——如绘画、舞蹈、歌曲等。这些东西在几千年的文明史中,除了样式上会有与时俱进的变化,但究其核心,若整体一个产业种类或艺术种类自被催生日起便被存续下来,那一定是满足了人类的需求。那么,大数据是否能够被当前的历史潮流接受,那就是要看它是否能够给我们带来切切实实的利益。
有不少人说,工业革命又将迎来一次变革了,更道大数据产业是第四次工业革命的标志,这个说法虽有待商榷,但是,只要它给人类社会带来生产力进步,以一种更智能新颖的模式代替人类重劳力,促进全社会信息共享和交流,让社会以更高进程地进步,那也未尝不可。
科学技术是第一生产力,踏入工业4.0时代,必有新的主导科学技术——大数据、BI、云计算、物联网、移动互联等新一代信息技术打破了原有的技术壁垒,形成了新型的产业和商业创新模式,促进和刺激了新一轮的生产力发展。
低廉快速,让大数据能成为盈利的工具
说到大数据,我们可以具体、广义地理解成Hadoop、各种数据挖掘、机器学习算法、人工智能。因此,今年也催生出学习以上技能的一股风潮。那么,努力学习是否真有丰厚的回报?答案是肯定的,因为,大数据能成为盈利的工具。
日常操作中,为了缩短计算和统计的时间,为运营与决策提供数据成本更为低廉和具有时效性的方案,我们会采用Hadoop或者Spark这些框架进行分布式计算;为了深埋于数据背后的数据量化后的规律与彼此的逻辑关系,我们使用机器学习算法对数据进行深度的挖掘和处理。
在运营学当中,“消除不确定性来降低试错成本”是一句经过万千实践留下的“金句”。而围绕这一中心思想发展起来的工程技术改进、算法改进、架构优化等,都是大数据变现的核心内容。而商家和企业十分看重的大数据分析,深究其本质,其实和获取信息的本质是一致的——通过消除不确定性来降低试错成本。
做大数据是为了降低成本,增加行业收益
很多人认为,大数据变现只是纸上谈兵,然而,在我们认识到本质之后就不会让人觉得变现这件事很困惑或很艰难。虽然大数据带来的利益并不是我们可以唾手可得的,但是,在比较明确的思路和目标下,在国家的相关政策,以及世界科技的潮流催生下,这也渐渐变成了一种趋势。
很多人误会,做大数据是为大而大,其实,做大数据是为了降低成本而大,这个成本是广义的。在项目启动初期,商家与企业看似花费了很多的金钱在设备购买、工具分析、人才挖掘上,但是未来这些设备上所承载的数据以及从中得到的信息,会大幅削减试错成本,而且在某些行业领域里这种增益的效果还会非常明显。以小见大,事半功倍的事情,何乐而不为?
大数据企业,成为融资创收的高产地
根植于大数据核心技术,越来越多的大数据企业被融资。
创建于2014年的 Cazena,位于马萨诸塞州沃尔瑟姆。Cazena开发的大数据即服务产品可以让企业把基于云的数据湖和数据集市结合起来,用于配置和优化大数据系统,包括那些构建在Hadoop、Spark和MPPSQL技术上的系统。因为强大的技术系统,它已经吸引了大量的关注和资金,更在2010年被IBM以17亿美元收购。
在2015年5月正式发布的 Maana位于加州Palo Alto,被看作是可以很好地收集和分析由物联网网络生成的海量数据的公司。而被业务线所广泛应用的Maana Knowledge Graph,则是Maana开发的一个数据搜索和发现平台。这个系统构建在Apache Spark处理引擎上,能收集来自多个系统或者"孤岛"的数据,并将其转换为运营洞察。2016年3月,Maana在B轮融资中获得2600万美元。
位于加州门罗帕克的Aviso,创建于2012年。Aviso基于云的软件集成了一系列CRM应用。结合机器学习算法和投资组合管理技术,Aviso开发的预测分析应用软件能够帮助销售经理和销售代表优化交易、降低风险和精确销售分析。现在,不少销售机构已经将这套应用软件应用于改善销售预测流程。
变现,是大数据火爆背后的根本原因。共享经济时代,越来越多人选择大数据相关行业。