大数据工程师待遇如何

2018年正是大数据应用及人才需求超高的一年
大数据工程师人均年薪30万
大数据时代的出现,未来30年将对计划经济和市场经济进行重新定义。在大数据时代,人类获得数据能力远远超过大家想象,我们对世界的认识要提升到新 的高度。在国内,普通大数据开发工程师的基本岗位薪资起步即10000元/月,一般入职薪资13000元/月 左右,2年以上工作大数据开发工程师薪资高达30000元/月以上。(以上数据来源于网络)

❷ 大数据工程师的日常工作内容有哪些

数据采集:


业务系统的埋点代码时刻会产生一些分散的原始日志,可以用Flume监控接收这些分散的日志,实现分散日志的聚合,即采集。


数据清洗:


一些字段可能会有异常取值,即脏数据。为了保证数据下游的"数据分析统计"能拿到比较高质量的数据,需要对这些记录进行过滤或者字段数据回填。


一些日志的字段信息可能是多余的,下游不需要使用到这些字段做分析,同时也为了节省存储开销,需要删除这些多余的字段信息。


一些日志的字段信息可能包含用户敏感信息,需要做脱敏处理。如用户姓名只保留姓,名字用'*'字符替换。


数据存储:


清洗后的数据可以落地入到数据仓库(Hive),供下游做离线分析。如果下游的"数据分析统计"对实时性要求比较高,则可以把日志记录入到kafka。


数据分析统计:


数据分析是数据流的下游,消费来自上游的数据。其实就是从日志记录里头统计出各种各样的报表数据,简单的报表统计可以用sql在kylin或者hive统计,复杂的报表就需要在代码层面用Spark、Storm做统计分析。一些公司好像会有个叫BI的岗位是专门做这一块的。


数据可视化:


用数据表格、数据图等直观的形式展示上游"数据分析统计"的数据。一般公司的某些决策会参考这些图表里头的数据。

❸ 大数据工程师的日常工作做什么

【导读】时至今日,相信大家对大数据工程师一点也不陌生,作为时下比较热门的高薪职业,很多人想转行做大数据工程师,那么你知道大数据工程师的日常工作做什么?工作强度大不大呢?为此小编整理了以下内容,一起来看看吧!

1, 写 SQL :一般来说许多入职一两年的大数据工程师首要的工作就是写 SQL ;

2 ,为集群搭大数据环境(一般公司招大数据工程师环境都现已搭好了,公司内部会有现成的大数据途径);

3 ,维护大数据途径(这个应该是每个大数据工程师都做过的工作,或多或少会承担“运维”的工作);

4, 数据搬家(有部分公司需求把数据从传统的数据库 Oracle、MySQL 等数据搬家到大数据集群中,这个是比较繁琐的工作);

5 ,运用搬家(有部分公司需求把运用从传统的数据库 Oracle、MySQL
等数据库的存储进程程序或许SQL脚本搬家到大数据途径上,这个进程也是非常繁琐的工作,高度重复且杂乱)

6 ,数据收集(收集日志数据、文件数据、接口数据,这个触及到各种格式的转化,一般用得比较多的是 Flume 和 Logstash)

7, 数据处理

7.1 ,离线数据处理(这个一般就是写写 SQL 然后扔到 Hive 中跑,其实和首要点有点重复了)

7.2 ,实时数据处理(这个触及到音讯部队,Kafka,Spark,Flink 这些,组件,一般就是 Flume 收集到数据发给 Kafka 然后
Spark 消费 Kafka 的数据进行处理)

8 ,数据可视化(这个我司是用 Spring Boot 联接后台数据与前端,前端用自己魔改的 echarts)

9 ,大数据途径开发(偏java方向的,大约就是把开源的组件整合起来整成一个可用的大数据途径这样,常见的是各种难用的 PaaS 途径)

10
,数据中台开发(中台需求支撑接入各种数据源,把各种数据源清洗转化为可用的数据,然后再根据原始数据建立起宽表层,一般为了节省开发本钱和服务器资源,都是根据宽表层查询出业务数据)

11 ,建立数据仓库(这儿的数据仓库的建立不是指 Hive ,Hive 是建立数仓的东西,数仓建立一般会分为三层 ODS、DW、DM
层,其间DW是最重要的,它又能够分为DWD,DWM,DWS,这个层级仅仅逻辑上的概念,类似于把表名按照层级差异隔来的操作,分层的目的是防止开发数据运用的时分直接访问底层数据,能够减少资源,留意,减少资源开支是减少
内存 和 CPU
的开支,分层后磁盘占用会大大增加,磁盘不值钱所以没什么联络,分层能够使数据表的逻辑更加清楚,便当进一步的开发操作,假定分层没有做好会导致逻辑紊乱,新来的员工难以接手业务,跋涉公司的运营本钱,还有这个建数仓也分为建离线和实时的)

以上就是小编今天给大家整理发送的关于“大数据工程师的日常工作做什么?”的相关内容,希望对大家有所帮助。想了解更多关于大数据工程师要求具备的能力,关注小编持续更新。

❹ 大数据开发的经常加班吗

IT行业都加班吧,加多少看情况和个人能力

大数据开发内:

1、负责公司大数据产品/项目的后台研发容;

2、负责技术预研,产品设计以及文档编写等工作;

3、参与大数据的数据治理和数据处理相关java开发工作;

4、参与海量数据处理,业务数据体系的设计、数据统计、分析及数据建模

大数据开发要处理大规模的数据,目前的各种技术在发展,高效的开发工具大大减轻了大数据开发工程师的工作负担,所以大数据开发工程师的工作虽然不是很轻松,但是也算不上很累,当然加班的情况还是存在的。

突然想起来,加米谷之前一个学大数据开发的学员说过一句话:现在这个社会做什么工作不需要加班呢?反正都是加班,不如选个工资高的加

做大数据开发工程师,加班是肯定会有的。所有的开发的岗位,都不是轻松的工作,不然也不会有那么高的薪资。如果想要拿高薪,也是需要对应的付出的。

❺ 大数据工程师好做吗

大数据工程师有不少细分方向,不同的方向需要具备不同的知识结构,通常情况下大回数据工程师分为四个答具体的工作领域,分别是大数据底层平台研发、大数据应用开发、大数据分析和大数据运维。

大数据工程师是做什么的?

分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务。

在工作岗位上,大数据工程师需要基于Hadoop,Spark等构建数据分析平台,进行设计、开发分布式计算业务。负责大数据平台(Hadoop,HBase,Spark等)集群环境的搭建,性能调优和日常维护等。

❻ #大数据工程师#现在的大数据工作好找吗一周了一个面试都没有

大数据的就业情况由几个因素决定:

一、是否学到了真正的大数据技术

1、学习能力

2、是否掌握真正的大数据技术

3、是否为有真实的大数据项目经验

二、学历(大数据开发对学历要求较高,最低门槛是大专及以上学历)

三、个人性格(是否适合大数据开发行业,是否可以与团队协作,是否善于交流融入到团队等)

四、时运因素(我有好几个学员学得挺好,但找工作碰壁很多,后来调整了心态,坚持了一段时间,也顺利入职了。不是有人说会有“水逆期”吗,总有一段时间会特别不顺,要坚持一下)

大数据工程师的薪资待遇在IT行业一直算是比较靠前的,影响你薪资的最主要是你的专业水平,以及工作能力,在技术岗位上,都是靠技术吃饭的,你得有拿得出手的能力。

❼ 大数据工程师的薪资如何

真正优秀的大数据工程师是需要不断的学习新知识和不断的自我积累经验。经验越多,薪资内当然也就越高容,大数据工程师的前景非常光明,在美国,大数据工程师平均年薪达17.5万美元,在中国顶尖的互联网公司里,大数据工程师的薪酬比同级别的其他职位高出30%以上。大数据技术发展的太快,在国内发展势头很猛,以至于大数据人才没有跟上大数据发展的步伐,在未来若干年内都会呈供不应求的状态,据预测,未来3-5年内数据人才缺口将高达150万。

因此企业经常高薪聘请大数据技术人才,这这样供不应求的情况下,数据人才的身价水涨船高。数据人才可从事数据分析师、hadoop开发工程师、数据挖掘工程师、算法工程师和大数据开发工程师等工作。北京的大数据工程师薪资高吗?2017年6月,大数据工程师岗位在北京的平均工资从10630元/月至30230元/月不等,随着人才缺口的增加,未来大数据工程师的薪资待遇可能会变得更高。

❽ 大数据工程师的薪资待遇怎么样

【导读】对于大数据工程师来说,他们需要具备行业的业务知识,大数据技术的最终目的是服务于社会和企业,并对市场和企业的发展起到重大推动作用,才是大数据的价值所在。那么,大数据工程师的薪资待遇如何呢?今天就跟随小编一起来了解下吧!

真正优秀的大数据工程师是需要不断的学习新知识和不断的自我积累经验。经验越多,薪资当然也就越高,大数据工程师的前景非常光明,在美国,大数据工程师平均年薪达17.5万美元,在中国顶尖的互联网公司里,大数据工程师的薪酬比同级别的其他职位高出30%以上。大数据技术发展的太快,在国内发展势头很猛,以至于大数据人才没有跟上大数据发展的步伐,在未来若干年内都会呈供不应求的状态,据预测,未来3-5年内数据人才缺口将高达150万。

因此企业经常高薪聘请大数据技术人才,这这样供不应求的情况下,数据人才的身价水涨船高。数据人才可从事数据分析师、hadoop开发工程师、数据挖掘工程师、算法工程师和大数据开发工程师等工作。北京的大数据工程师薪资高吗?2017年6月,大数据工程师岗位在北京的平均工资从10630元/月至30230元/月不等,随着人才缺口的增加,未来大数据工程师的薪资待遇可能会变得更高。

大数据行业以平均21.2k的月薪高居互联网行业榜首,远高于排名二三位的物联网和智能硬件行业。

关于大数据工程师的薪资待遇如何,小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

❾ 大数据工程师辛苦吗 java大数据薪资待遇高吗

大数据工程师日常工作辛苦谈不上,只是比较枯燥,需要一直对着电脑操作,特殊情况比较多需要经常加班,收入与付出和技术是正比关系,软件技术整体薪资是非常高的

❿ 大数据工程师日常工作内容有哪些

当前随着云计算、大数据平台逐渐开始落地应用,大数据开发工程师(行业领域)的岗位需求正在不断增加,目前也有不少程序员(Java方向)也会转向大数据开发岗位,这些岗位的岗位附加值还是比较高的。这些开发岗位的日常工作基本上就是完成代码的编写,只不过需要与大数据平台进行交互,需要调用大数据平台的各种服务来完成功能实现,总体上的难度并不算大,但是需要具有一定的行业经验。

当前大数据平台开发岗位的附加值还是比较高的,大数据平台开发岗位往往集中在大型互联网企业,随着云计算逐渐从IaaS向PaaS过渡,大数据平台开发也会基于行业特点来开发针对性比较强的PaaS平台,这是整合行业资源并搭建技术生态的一个关键。搭建PaaS平台不仅需要掌握大数据知识,同时还需要掌握云计算知识,实际上大数据和云计算本身就有比较紧密的联系,二者在技术体系结构上都是以分布式存储和分布式计算为基础,只不过关注点不同而已。

大数据运维工程师以搭建大数据平台为主,虽然这部分岗位的门槛相对比较低,但是需要学习的内容还是比较多的,而且内容也比较杂,网络知识、数据库管理知识、操作系统(Linux)知识、大数据平台(含开源和商用平台)知识都需要掌握一些,对于实践操作的要求会比较高。

最后,当前大数据工程师往往并不包含专业的数据分析岗位,一般数据分析岗位都会单独列出来,这部分岗位涉及到算法岗、开发岗(实现)和数据呈现岗等,数据分析岗位对于从业者的数学基础要求比较高,同时还需要掌握大量的数据分析工具,当然也离不开Python、Sql等知识。

关于大数据工程师日常工作内容有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。