① 深度学习和人工智能之间是什么样的关系

我只是想要点分,所以如果可以的话请点赞
人工智能很早就有了,人工智内能本质就是让机器具有容智慧
但是机器只能够学习,目前仍不具有强主动创造能力,和几十年前一样,他又是怎么火起来的?
那么为什么人工智能火起来了,因为深度学习,深度学习火起来是因为深度神经网络
深度学习是人工智能的一种最火热的实现手段,主要依赖于高质量的算法和大数据计算技术
所以只有硬件跟上去了,深度学习才能更好的实现,这就是它火起来的原因

② 深度学习和人工智能有什么关系

人工智能
人工智能英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学研究领域的一个重要分支,又是众多学科的一个交叉学科,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括语音识别、图像识别、机器人、自然语言处理、智能搜索和专家系统等等,人工智能可以对人的意识、思维的信息过程的模拟。人工智能包括众多的分支领域,比如大家熟悉的机器学习、自然语言理解和模式识别等。
机器学习
机器学习属于人工智能研究与应用的一个分支领域。机器学习的研究更加偏向理论性,其目的更偏向于是研究一种为了让计算机不断从数据中学习知识,而使机器学习得到的结果不断接近目标函数的理论。
机器学习,引用卡内基梅隆大学机器学习研究领域的着名教授Tom Mitchell的经典定义:
如果一个程序在使用既有的经验E(Experience)来执行某类任务T(Task)的过程中被认为是“具备学习能力的”,那么它一定要展现出:利用现有的经验E,不断改善其完成既定任务T的性能(Performance)的特质。
机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。在我们当下的生活中,语音输入识别、手写输入识别等技术,识别率相比之前若干年的技术识别率提升非常巨大,达到了将近97%以上,大家可以在各自的手机上体验这些功能,这些技术来自于机器学习技术的应用。
深度学习
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。晦涩难懂的概念,略微有些难以理解,但是在其高冷的背后,却有深远的应用场景和未来。
关系
严格意义上说,人工智能和机器学习没有直接关系,只不过是机器学习的方法被大量的应用于解决人工智能的问题而已。目前机器学习是人工智能的一种实现方式,也是最重要的实现方式。
深度学习是机器学习比较火的一个方向,其本身是神经网络算法的衍生,在图像、语音等富媒体的分类和识别上取得了非常好的效果。
人工智能(AI)和机器学习(ML)现在是两个非常热门的流行语,通常似乎可以互换使用。但这二者并不完全一样,但是有时会导致人们的看法有一些混乱,因此需要解释这二者之间的区别。当大数据、数据分析,以及更广泛的技术变革浪潮席卷全球时,这两个术语都会频繁出现。总之,最好的答案是:人工智能是一种机器能够以人们认为“聪明”的方式执行任务的更广泛的概念。而且,机器学习是人工智能的一个最新应用,它基于这样一个想法:真的应该能够让机器访问数据,让他们自己学习。

③ 深度解析人工智能,机器学习和深度学习的区别

有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。

今年早些时候,Google DeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machine learning)和深度学习(deep learning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。

今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。

人工智能、机器学习和深度学习之间的区别和联系

如上图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。

五十年代,人工智能曾一度被极为看好。之后,人工智能的一些较小的子集发展了起来。先是机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大的影响。

| 从概念的提出到走向繁荣

1956年,几个计算机科学家相聚在达特茅斯会议(Dartmouth Conferences),提出了“人工智能”的概念。其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言;或者被当成技术疯子的狂想扔到垃圾堆里。坦白说,直到2012年之前,这两种声音还在同时存在。

过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。

让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点苗头,发展到能够支撑那些每天被数亿用户使用的应用的。

| 人工智能(Artificial Intelligence)——为机器赋予人的智能

人工智能、机器学习和深度学习之间的区别和联系

早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。这就是我们现在所说的“强人工智能”(General AI)。这个无所不能的机器,它有着我们所有的感知(甚至比人更多),我们所有的理性,可以像我们一样思考。

人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能现在还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。

我们目前能实现的,一般被称为“弱人工智能”(Narrow AI)。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者Facebook的人脸识别。

这些是弱人工智能在实践中的例子。这些技术实现的是人类智能的一些具体的局部。但它们是如何实现的?这种智能是从何而来?这就带我们来到同心圆的里面一层,机器学习。

| 机器学习—— 一种实现人工智能的方法

人工智能、机器学习和深度学习之间的区别和联系

机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

机器学习直接来源于早期的人工智能领域。传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。

机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。

这个结果还算不错,但并不是那种能让人为之一振的成功。特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么前一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。

随着时间的推进,学习算法的发展改变了一切。

| 深度学习——一种实现机器学习的技术

人工智能、机器学习和深度学习之间的区别和联系

人工神经网络(Artificial Neural Networks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。

例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。

每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。

我们仍以停止(Stop)标志牌为例。将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。

这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。

即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。

不过,还是有一些虔诚的研究团队,以多伦多大学的Geoffrey Hinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。

我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。

只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(Andrew Ng)教授在Google实现了神经网络学习到猫的样子等等。

吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。吴教授为深度学习(deep learning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。

现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。

| 深度学习,给人工智能以璀璨的未来

深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。

人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。你的C-3PO我拿走了,你有你的终结者就好了。

④ 人工智能,机器学习和深度学习的区别

人工智能:是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能内以人类智能相似的方式做出容反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
机器学习:是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
深度学习:有了深度学习,机器学习才有了许多实际的应用,它还拓展了AI的整体范围。 深度学习将任务分拆,使得各种类型的机器辅助变成可能。
光环大数据的人工智能培训对这几个学科有深入的讲解,可以去了解下

⑤ 人工智能,机器学习和深度学习的区别是什么

这三个概念比较抽象,现在来用通俗的方式解释一下。
通过一个经典的例子来解释人工智能、机器学习和深度学习之间的区别:比较苹果和橙子。
1、人工智能
从广义上讲,人工智能描述一种机器与周围世界交互的各种方式。通过先进的、像人类一样的智能——软件和硬件结合的结果——一台人工智能机器或设备就可以模仿人类的行为或像人一样执行任务。
2、机器学习
机器学习是人工智能的一种途径或子集,它强调“学习”而不是计算机程序。一台机器使用复杂的算法来分析大量的数据,识别数据中的模式,并做出一个预测——不需要人在机器的软件中编写特定的指令。在错误地将奶油泡芙当成橙子之后,系统的模式识别会随着时间的推移而不断改进,因为它会像人一样从错误中吸取教训并纠正自己。
通过机器学习,一个系统可以从自身的错误中学习来提高它的模式识别能力。
3、深度学习
深度学习是机器学习的一个子集,推动计算机智能取得长足进步。它用大量的数据和计算能力来模拟深度神经网络。从本质上说,这些网络模仿人类大脑的连通性,对数据集进行分类,并发现它们之间的相关性。如果有新学习的知识(无需人工干预),机器就可以将其见解应用于其他数据集。机器处理的数据越多,它的预测就越准确。
例如,一台深度学习的设备可以检查大数据——比如通过水果的颜色、形状、大小、成熟时间和产地——来准确判断一个苹果是不是青苹果,一个橙子是不是血橙。

⑥ 人工智能和深度学习有什么区别和联系呀

深度学习作为机器学习的一个分支,深度学习除了可以学习任务与特征之间专的关联属外,还能从各种数据中提取到一些更加复杂的特征,进而来学习。在网络中我们可以查到对深度学习的精确定义为“深度学习是机器学习领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能”。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
所以,.top域名认为,人工智能通过实现目标来完成不断地进步,机器学习是实现手段,深度学习则是是其中一种方法。

⑦ 深度学习和人工智能是什么关系

深度学习是人工智能的子集,是实现人工智能的一种算法。还有其他方法可以实现回人工智能,比如统计答学习,专家系统或者未来尚待人类发明的算法。
深度学习是指利用深度神经网络学习特定分布(概率论理念)从而实现人工智能。深度神经网络是相对简单感知机而言的。一般的感知机只有两三层,输入量也比较少。而深度神经网络的层数多,输入量多。
深度神经网络早在三四十年前就被提出来了,只是受限于当时硬件计算能力,难以实现。近十年来受益于GPU运算能力的提高,还有市场对图像处理、文字和音频处理的需求,深度学习才成为研究热门。

⑧ 深度学习与人工智能有什么区别那个更好一些呢

人工智能(Artificial Intelligence)是一个最广泛的概念,人工智能的目的就是让计算机这台机器能够象人一样思考,而机器学习(Machine Learning)是人工智能的分支,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,使之不断改善自身的性能。

深度学习(Deep Learning)是一种机器学习的方法,它试图使用包含复杂结构或由多重非线性变换构成的多个处理层(神经网络)对数据进行高层抽象的算法。