大数据的背后推手是什么
1. 什么是大数据,通俗的讲
有人说大数据技术是第四次技术革命,这个说法其实不为过。
很多人只是听过大数据这个词或者是简单知道它是什么,那么它是什么呢,在这里就通俗点来说一下个人对大数据的理解。
大数据,很明显从字面上理解就是大量的数据,海量的数据。大,意思就是数据的量级很大,不上TB都不好意思说是大数据。数据,狭义上理解就是12345那么些数据,毕竟计算机底层是二进制来存的,那么在大数据领域,数据就不仅仅包括数字这些,它可以是所有格式的东西,比如日志,音频视频,文件等等。
所以,大数据从字面上理解就是海量的数据,技术上它包括这些海量数据的采集,过滤,清洗,存储,处理,查看等等部分,每一个部分包括一些大数据的相关技术框架来支持。
举个例子,淘宝双十一的总交易额的显示,后面就是大数据技术的支持,全国那么多淘宝用户的交易记录汇聚到一起,数据量很大,而且要做到实时的展现,就需要强有力的大数据技术来处理了。
数据量一大,那么得找地方来存,一个服务器硬盘可以挂多少,肯定满足不了这么大的数据量存储啊,所以,分布式的存储系统应运而生,那就是HDFS分布式文件系统。简单的说,就是把这么大的数据分开存在甚至几百甚至几千台服务器上,那么管理他们的系统就是HDFS文件系统,也是大数据技术的最基本的组件。
有地方存了,需要一些分布式的数据库来管理查询啊,那就有了Hbase等,还需要一些组件来计算分析这些数据啊,maprece是最基本的计算框架,其他的计算框架Spark和Storm可以完成实时的处理,其中HDFS和MapRece组成了Hadoop1.
总之,一切都是数据。我们的历史,是不是都是大量的数据保存下来的,现在我们也是大数据的生活,天天有没有接到骚扰电话还知道你姓什么,你查话费什么的从几亿人的数据中查到你的信息,大数据生活。未来,大数据将更深刻的渗透到生活中。
2. 现在是个互联网时代是个大数据时代,做什么最适合IT人呢
现在IT很多方面的工作都很吃香啊,但是你也清楚互联网是个是个大数据的时代,只要把一门技术钻研做好就可以了,在一个领域上有所发展就挺好的。
3. 大数据背后都用到了哪些技术
这个展望大数据专家委这是做的第四次,从之前2012年底做的2013年的展望,即会做下一年的预测,这个预测是调研方式就是大数据专家委一百多位委员内部进行这样的一个观点征集、汇总,最后进行投票和去年一样,同时邀请中国大数据产业联盟的会员参与到最后的投票环节,今年总共投票的专家是116位,从这116位专家投票中形成了下述的结果。
根据今年大数据专家委列出的2016大数据产业技术发展的十大趋势,从这里面我们简单解读为他出现了这样四个重点的关键字,一个是民生相关的应用,因为应用很多,应用驱动大数据,因此民生相关的大数据可能会得到更快的发展,第二就是多样性和融合性,不管是技术、产业等等各方面会出现多样融合的状况,另外第三个就是政策拉动,第四总是呼吁各个层面出现多样的生态,简单对这十各方面稍微做一个解释。
第一,可视化技术。作为汇总整理的时候这也是给了工作组一个很大的意外,做了这样一个解读,我们认为可视化作为技术形态能够排到第一,其实背后隐藏着大数据的贫民化。普通老百姓和常规的决策者能够更好的理解大数据的效果和价值,所以能够摆在这么重的位置,不仅仅可视化的形态,也包括可视化的分析,这是排在第一的趋势。
第二,多学科融合。大家对学科的发展非常关注,预测排在第二位是多学科融合,大家认为数据科学的雏形已经出现了,从表现形式来看,很多相关的数据,科学的研究院,专门的实验室,也可以看到这样的学科逐渐的完备,可能会逐渐的出现,当然本身确实也是交叉性的学科,是多学科融合的产物,所以从事大数据研究不仅仅是计算机领域的科学家,也包括数学等等方面的科学家参与到整个大数据前沿的研究中。
第三,大数据的安全和隐私持续受到关注。从现在大数据的发展情况来说,应该说针对大数据的威胁和大数据所产生的副作用,以及大数据发展中的障碍会逐渐成为大数据领域所要关注的点。针对大数据的攻击现在没有大规模的报道,但是隐忧已经令大家担忧。隐私大数据所带来的副作用,原来的隐私我们接受的程度,有了大数据之后隐私接受程度发生了很大的变化。由于大家对大数据的安全等等相关的问题的担忧阻碍我们在大数据的发展上的投入,这也是阻碍大数据发展的问题。
4. 近期黄金走高的背后推手是什么
沙特事件不断传出新消息,市场情绪较为复杂,黄金作为避险资产走势震荡。
5. 幕后推手是什么意思
是指在事件的背后进行计划和操作的人或集团。
一般都说坏人。
6. “幕后推手”是什么意思,谁发明的这词
是指在事件的背后进行计划和操作的人或集团。
一般都说坏人。
不知道谁发明的这个词。
7. 简要描述大数据产生背后的技术原因急!
大数据技术的发展,历经了多个阶段,而真正大数据技术开始成熟,是来自于专Google在2004年提出了的分布式数据系统(属Google file system,GFS)、分布式计算系统MapRece和分布式数据库BigTable,基于这套体系,大数据处理技术开始走向成熟。
2014年以后,整体大数据的技术栈已经趋于稳定,由于云计算、人工智能等技术发展,还有芯片、内存端的变化,大数据技术也在发生相应的变化。
最早大数据生态没有办法统一批处理和流计算,只能采用Lambda架构,批的任务用批计算引擎,流式任务采用流计算引擎,比如批处理采用MapRece,流计算采用Storm。
后来Spark试图从批的角度统一流处理和批处理,Spark Streaming采用了micro-bach的思路来处理流数据。近年来纯流架构的Flink异军突起,由于其架构设计合理,生态健康,近年来发展特别快。而Spark近期也抛弃了自身微批处理的架构,转向了纯流架构Structure Streaming,未来霸主还未见分晓。