大数据的金融风险
『壹』 大数据现状,风险是什么是否侵犯网民权益
大数据分析处理解决方案
方案阐述
每天,中国网民通过人和人的互动,人和平台的互动,平台与平台的互动,实时生产海量数据。这些数据汇聚在一起,就能够获取到网民当下的情绪、行为、关注点和兴趣点、归属地、移动路径、社会关系链等一系列有价值的信息。
数亿网民实时留下的痕迹,可以真实反映当下的世界。微观层面,我们可以看到个体们在想什么,在干什么,及时发现舆情的弱信号。宏观层面,我们可以看到当下的中国正在发生什么,将要发生什么,以及为什么?借此可以观察舆情的整体态势,洞若观火。
原本分散、孤立的信息通过分析、挖掘具有了关联性,激发了智慧感知,感知用户真实的态度和需求,辅助政府在智慧城市,企业在品牌传播、产品口碑、营销分析等方面的工作。
所谓未雨绸缪,防患于未然,最好的舆情应对处置莫过于让舆情事件不发生。除了及时发现问题,大数据还可以帮我们预测未来。具体到舆情服务,舆情工作人员除了对舆情个案进行数据采集、数据分析之外,还可以通过大数据不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,通过对同类型舆情事件历史数据,及影响舆情演进变化的其他因素进行大数据分析,提炼出相关舆情的规律和特点。
大数据时代的舆情管理不再局限于危机解决,而是梳理出危机可能产生的各种条件和因素,以及从负面信息转化成舆情事件的关键节点和衡量指标,增强我们对同类型舆情事件的认知和理解,帮助我们更加精准的预测未来。
用大数据引领创新管理。无论是政府的公共事务管理还是企业的管理决策都要用数据说话。政府部门在出台社会规范和政策时,采用大数据进行分析,可以避免个人意志带来的主观性、片面性和局限性,可以减少因缺少数据支撑而带来的偏差,降低决策风险。通过大数据挖掘和分析技术,可以有针对性地解决社会治理难题;针对不同社会细分人群,提供精细化的服务和管理。政府和企业应建立数据库资源的共享和开放利用机制,打破部门间的“信息孤岛”,加强互动反馈。通过搭建关联领域的数据库、舆情基础数据库等,充分整合外部互联网数据和用户自身的业务数据,通过数据的融合,进行多维数据的关联分析,进而完善决策流程,使数据驱动的社会决策与科学治理常态化,这是大数据时代舆情管理在服务上的延伸。
解决关键
如何能够快速的找到所需信息,采集是大数据价值挖掘最重要的一环,其后的集成、分析、管理都构建于采集的基础,多瑞科舆情数据分析站的采集子系统和分析子系统可以归类热点话题列表、发贴数量、评论数量、作者个数、敏感话题列表自动摘要、自动关键词抽取、各类别趋势图表;在新闻类报表识别分析归类: 标题、出处、发布时间、内容、点击次数、评论人、评论内容、评论数量等;在论坛类报表识别分析归类: 帖子的标题、发言人、发布时间、内容、回帖内容、回帖数量等。
解决方案
多瑞科舆情数据分析站系统拥有自建独立的大数据中心,服务器集中采集对新闻、论坛、微博等多种类型互联网数据进行7*24小时不间断实时采集,具备上千亿数据量的数据索引、挖掘分析和存储能力,支撑政府、企业、媒体、金融、公安等多行业用户的舆情分析云服务。因此多瑞科舆情数据分析站系统在这方面有着天然优势,也是解决信息数量和信息(有价值的)获取效率之间矛盾的唯一途径,系统利用各种数据挖掘技术将产生人工无法替代的效果,为市场调研工作节省巨大的人力经费开支。
实施收益
多瑞科舆情数据分析站系统可通过对大数据实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
『贰』 基于大数据的金融风险有哪些表现
我有清晰的解题思路!~
『叁』 如何利用大数据控制金融风险
互联网金融(ITFIN)是指传统金融机构与互联网企业利用互联网技术和信息通回信技术实现资金融通答、支付、投资和信息中介服务的新型金融业务模式。
大数据(big data),指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
任何投资都具备风险,不仅是在互联网的金融领域里存在。大数据的主要作用,是针对以往及现在的金融情况,进行数据分析,得出结果,预测未来金融方向的走向。
但是,金融除了受到经济发展的影响之外,也受到政治的影响。因此,只是靠大数据是无法对互联网金融进行控制,只能是最大化的规避风险,最小化的降低损失,获得高回报的收益。
『肆』 大数据金融风控解决方案哪些公司可以提供
我们就是可以的,大数据风控即大数据风险控制,是指利用数据分析和模型进行风险评估,为金融行业和个人用户提供全方位的安全保障。
大数据风控流程的建立主要分为四个阶段:数据收集、数据建模、构建客户评分体系及监测分析。收集到海量数据后,需经过大量的清洗、探索与抽样,运用灵活策略来交叉匹配并综合分析,构建出客户评分体系。
基于先进的风控分析模型,以及准确、稳定、实时更新的丰富数据源,利用精密算法和灵活策略进行综合高效的监测分析,保障业务平台健康稳定运行。
『伍』 金融大数据应用面临哪些风险
1.金融科技巨头可能产生数据垄断
一些金融科技巨头凭借其在互联网领域的固有优势,掌握了大量数据,客观上可能会产生数据寡头的现象,可能会带来数据垄断。一些机构掌握了核心的信用数据资源,由于缺乏分享的激励机制,导致与征信的共享理念存在冲突。
2.存在数据孤岛现象,数据融合困难
政府和企业都面临数据孤岛难题。大数据时代,数据已经成为核心资源,企业出于保护商业机密或者节约数据整理成本的考虑而不愿意共享自身数据,一些政府部门也缺乏数据公开的动力。数据孤岛现象的存在,将导致大数据信用评估模型采用的数据维度和算法的不同,大数据征信模型的公信力和可比性容易遭到质疑。
3.数据安全和个人隐私保护难度升级
目前,大数据的获取大致有四种方法:自有平台积累、通过交易或合作获取、通过技术手段获取、用户自己提交的数据等。但是由于相关的法律法规体系尚不健全,数据交易存在许多不规范的地方,甚至出现数据非法交易和盗取信息的现象。大数据来源复杂多样加大了用户隐私泄露的风险,其一,我国金融大数据行业的发展乃至Fintech行业的发展,在很大程度上得益于互联网应用场景的发展,而大数据从互联网应用场景向金融领域的转移往往发生在一些金融科技企业的集团内部,这个过程缺乏监管和规范,可能会侵犯到用户的知情权、选择权和隐私权。其二,应用数据存在多重交易和多方接入的可能性,隐私数据保护的边界不清晰;其三,技术手段的加入,加大了信息获取的隐蔽性,一旦出现隐私泄露纠纷,用户将面临取证难、诉讼难的问题;其四,大数据采集数据的标准不一,用户的知情权、隐私权可能受到侵犯。可见,在大数据环境下,个人数据应用的隐私保护是一个复杂的消费者权益保护问题,涉及到道德、法律、技术等诸多领域。
『陆』 互联网金融的风险,可以利用大数据的优势来控制吗
互联网金融(抄ITFIN)是指传统袭金融机构与互联网企业利用互联网技术和信息通信技术实现资金融通、支付、投资和信息中介服务的新型金融业务模式。
大数据(big data),指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
任何投资都具备风险,不仅是在互联网的金融领域里存在。大数据的主要作用,是针对以往及现在的金融情况,进行数据分析,得出结果,预测未来金融方向的走向。
但是,金融除了受到经济发展的影响之外,也受到政治的影响。因此,只是靠大数据是无法对互联网金融进行控制,只能是最大化的规避风险,最小化的降低损失,获得高回报的收益。
『柒』 大数据怎样影响着金融业
正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。
中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势:一方面,金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。
总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。
首先,大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。
其次,大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。
第三,大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,花旗、富国、UBS等先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行360度评价,计算动态违约概率和损失率,提高贷款决策的可靠性。
『捌』 如何运用大数据进行商业银行风险管理
商业银行的风险管理除了对基于银行过往的数据对未来做出预测以外,还会涉及到公司层面的问题。比如,公司以及其产品在网民中的地位如何,有哪些优点和不足,公司的竞争对手目前有什么举动等等。这里就涉及到对于网络进行信息的采集,进而进行舆情监测,发觉公司需要的有价值的信息和情报。
就目前来说,舆情 监测已经成为金融行业的一种十分重要的风险管理手段,因为互联网的力量越来越不可忽视。交行等就是其中典型的代表,他们的舆情系统来自Knowlesys,是基于web2db knowlesys 的,其主要的效果是这样的:
1. 可实时监测微博,论坛,博客,新闻,搜索引擎中相关信息
2. 可对重点QQ群的聊天内容进行监测
3. 可对重点首页进行定时截屏监测及特别页面证据保存
4. 对于新闻页面可以找出其所有转载页面
5. 系统可自动对信息进行分类26禁止9盗用0
6. 系统可追踪某个专题或某个作者的所有相关信息
7. 监测人员可对信息进行挑选,再分类
8. 监测人员可以基于自己的工作结果轻松导出制作含有图表的舆情日报周报