大数据的理解正确的是
『壹』 关于大数据的来源 以下理解正确的是哪些
数据(big data)指定间范围内用规软件工具进行捕捉、管理处理数据集合需要新处理模式才能具更强决策力、洞察发现力流程优化能力海量、高增率化信息资产
维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写《数据代》 数据指用随机析(抽调查)捷径采用所数据进行析处理数据5V特点(IBM提):Volume(量)、Velocity(高速)、Variety()、Value(低价值密度)、Veracity(真实性)
『贰』 什么是“大数据”,如何理解“大数据”
大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
『叁』 如何正确认识“大数据”
大数据是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据集合。”业界通常用 Volume、Variety、Value、Velocity来概括其特征。
大数据的价值可以概括为“资源优化配置”。社交网络的通达更是彰显了其价值,我们从数据中观察到人类社会的行为模式,从庞杂的数据背后挖掘、分析用户的行为习惯和喜好,提升产品和服务,有针对性地调整和优化自身。
『肆』 对大数据的理解,哪些是正确的
在麦肯锡全球研究所给出的定义中指出:大数据即是一种规模大到在获取,存储,管理,分析方面大大超出了传统数据库软件工具能力范围的数据集合。简单而言大数据是数据多到爆表。大数据的单位一般以PB衡量。那么PB是多大呢?1GB=1024MB ,1PB=1024GB才足以称为大数据。
其次,大数据具有什么样的特点和结构呢?
大数据从整体上看分为四个特点,
第一,大量。
衡量单位PB级别,存储内容多。
第二,高速。
大数据需要在获取速度和分析速度上要及时迅速。保证在短时间内更多的人接收到信息。
第二,多样。
数据的来源是各种渠道上获取的,有文本数据,图片数据,视频数据等。因此数据是多种多样的。
第三,价值。
大数据不仅仅拥有本身的信息价值,还拥有商业价值。大数据在结构上还分为:结构化,半结构化,非结构化。结构化简单来讲是数据库,是由二维表来逻辑表达和实现的数据。非结构化即数据结构不规则或不完整,没有预定义的数据模型。由人类产生的数据大部分是非结构化数据。
那我们身边有哪些东西是大数据呢?
在生产生活中常见的有电信数据:通话数据、短信数据、手机浏览数据。银行数据,微信聊天数据等。
最后,大数据能做什么?
人们的生活离不开它,因为他在日常生活中发挥的作用逐渐加强。例如:用户画像,帮助人们制定个性化的需求,知识图谱。人工智能例如:谷歌的“阿尔法狗”在围棋大赛中赢得、阿里巴巴的ET、网络的无人驾驶汽车等。数字货币,物联网等。
『伍』 大数据的本质是什么
从本质上讲,大数据是指按照一定的组织结构连接起来的数据,是非常简单而且直接的事物,但是从现象上分析,大数据所呈现出来的状态复杂多样,这是因为现象是由观察角度决定的。
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。
它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
(5)大数据的理解正确的是扩展阅读:
想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
第一层面是理论:
理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术:
技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践:
实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。