1. 如何搭建大数据分析平台

1、 搭建大数据分析平台的背景
在大数据之前,BI就已经存在很久了,简单把大数据等同于BI,明显是不恰当的。但两者又是紧密关联的,相辅相成的。BI是达成业务管理的应用工具,没有BI,大数据就没有了价值转化的工具,就无法把数据的价值呈现给用户,也就无法有效地支撑企业经营管理决策;大数据则是基础,没有大数据,BI就失去了存在的基础,没有办法快速、实时、高效地处理数据,支撑应用。 所以,数据的价值发挥,大数据平台的建设,必然是囊括了大数据处理与BI应用分析建设的。
2、 大数据分析平台的特点
数据摄取、数据管理、ETL和数据仓库:提供有效的数据入库与管理数据用于管理作为一种宝贵的资源。
Hadoop系统功能:提供海量存储的任何类型的数据,大量处理功率和处理能力几乎是无限并行工作或任务
流计算在拉动特征:用于流的数据、处理数据并将这些流作为单个流。
内容管理特征:综合生命周期管理和文档内容。
数据治理综合:安全、治理和合规解决方案来保护数据。
3、 怎样去搭建大数据分析平台
大数据分析处理平台就是整合当前主流的各种具有不同侧重点的大数据处理分析框架和工具,实现对数据的挖掘和分析,一个大数据分析平台涉及到的组件众多,如何将其有机地结合起来,完成海量数据的挖掘是一项复杂的工作。我们可以利用亿信一站式数据分析平台(ABI),可以快速构建大数据分析平台,该平台集合了从数据源接入到ETL和数据仓库进行数据整合,再到数据分析,全部在一个平台上完成。
亿信一站式数据分析平台(ABI)囊括了企业全部所需的大数据分析工具。ABI可以对各类业务进行前瞻性预测分析,并为企业各层次用户提供统一的决策分析支持,提升数据共享与流转能力。

2. 用hadoop搭建大数据平台,前端页面展示可以使用thinkphp吗,

我们公司数据分析清洗是python 页面展示是tp3

3. 如何架构大数据系统 hadoop

大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。

一、大数据建设思路

1)数据的获得

四、总结

基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。

4. 如何基于hadoop搭建大数据开源平台

这个就比较负责了,可以用hadoop+hbase+spark/storm进行平台构建,spark用于数据分析和处理、hbase用于将处理后的数据保存、hadoop用于离线分析和原始数据存储,具体的还得结合应用场景

5. 大数据hadoop系统搭建的难题有哪些

不是,只是因为hadoop是开源的,而且Apache开发的,各方面都比较稳定,也方便开发个性化

6. 大数据平台是什么什么时候需要大数据平台如何建立大数据平台

首先我们要了解java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。

Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。

Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。

Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。

Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。

Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。

Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。

Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。

Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。

Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。

Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。

Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

7. 简述hadoop和spark大数据平台的基本构架和工作原理

简述这你来查查这大数比据平台的一些消息,关于数据的。

8. 在大数据平台hadoop可以做哪些应用

Hadoop是适合于大数据的分布式存储和处理平台,是一种开源的框架
1、搜索引擎(Hadoop的初衷,专为了针对属大规模的网页快速建立索引)。
2、大数据存储,利用Hadoop的分布式存储能力,例如数据备份、数据仓库等。
3、大数据处理,利用Hadoop的分布式处理能力,例如数据挖掘、数据分析等。
4、Hadoop是一种分布式的开源框架,对于分布式计算有很大程度地参考价值。
应用:例如
日志处理
用户细分特征建模
个性化设计

9. 如何搭建基于Hadoop的大数据平台

Hadoop: 一个开源的分布式存储、分布式计算平台.(基于Apache)

Hadoop的组成:
HDFS:分布式文件系统,存储海量的数据。
MapRece:并行处理框架,实现任务分解和调度。
Hadoop的用处:
搭建大型数据仓库,PB级数据的存储、处理、分析、统计等业务。
比如搜索引擎、网页的数据处理,各种商业智能、风险评估、预警,还有一些日志的分析、数据挖掘的任务。
Hadoop优势:高扩展、低成本、成熟的生态圈(Hadoop Ecosystem Map)

Hadoop开源工具:
Hive:将SQL语句转换成一个hadoop任务去执行,降低了使用Hadoop的门槛。
HBase:存储结构化数据的分布式数据库,habase提供数据的随机读写和实时访问,实现 对表数据的读写功能。
zookeeper:就像动物管理员一样,监控hadoop集群里面每个节点的状态,管理整个集群 的配置,维护节点针之间数据的一次性等等。
hadoop的版本尽量选稳定版本,即较老版本。
===============================================
Hadoop的安装与配置:
1)在Linux中安装JDK,并设置环境变量
安装jdk: >> sudo apt-get install openjdk-7-jdk
设置环境变量:
>> vim /etc/profile

>> :wq
2)下载Hadoop,并设置Hadoop环境变量
下载hadoop解压缩:
>> cd /opt/hadoop-1.2.1/
>> ls
>> vim /etc/profile

>>:wq

3)修改4个配置文件
(a)修改hadoop-env.sh,设置JAVA_HOME
(b)修改core-site.xml,设置hadoop.tmp.dir, dfs.name.dir, fs.default.name
(c)修改mapred-site.xml, 设置mapred.job.tracker
(d)修改hdfs-site.xml,设置dfs.data.dir
>> cd conf
>> ls

>> vim mapred-site.xml

>> :wq
>> vim core-site.xml
第一部分

第二部分

>> :wq
>> vim hdfs-site.xml

>> :wq
>> vim hadoop-env.sh

>> :wq
# hadoop格式化
>> hadoop namenode -format
# hadoop启动
>> start-all.sh
# 通过jps命令查看当前运行进程
>> jps
看见以下进程即说明hadoop安装成功

10. 如何快速搭建企业级大数据平台

提到大数据,无可避免的就会提到Hadoop。尽管大数据并不等同于Hadoop,但Hadoop确实是最热门专的大数属据技术。下面是最常用的混搭架构,来看一下大数据平台可以怎么搭建,支撑企业应用:

通过Kafka作为统一采集平台的消息管理层,灵活的对接、适配各种数据源采集(如集成flume),提供灵活、可配置的数据采集能力。
利用Spark和Hadoop技术,构建大数据平台最为核心的基础数据的存储、处理能力中心,提供强大的数据处理能力,满足数据的交互需求。同时通过Sparkstreaming,可以有效满足企业实时数据的要求,构建企业发展的实时指标体系。
同时为了更好的满足的数据获取需求,通过RDBMS,提供企业高度汇总的统计数据,满足企业常规的统计报表需求,降低使用门槛。对大数据明细查询需求,则通过构建HBase集群,提供大数据快速查询能力,满足对大数据的查询获取需求。