大数据项目建设
⑴ 什么是大数据工程
大数据工程需求处理数据的定义、搜集、核算与保存的作业,因而大数据工程师们在规划和布置这样的体系时首要考虑的是数据高可用的问题,即大数据工程体系需求实时地为下流事务体系或剖析体系供给数据效劳;
⑵ 大数据中心建设需要具备哪些条件
您好!大数据中心是近几年才发展起来的,仅2011年到2013年上半年全国共规划建设数据中心255个,已投入使用173个,总用地约713.2万平方米,总机房面积约400万平方米。数据中心建设条件主要包括以下方面:
一、能源供应:数据中心三分之一以上的预算将是环境成本。数据中心约60%的资产支出和50%的运营成本都与能源有关。在确保高性能的同时,将冷却散热降至最低是云数据中心实现“绿色”所必须要做的,这就要求更科学、更合理的供电方式和制冷系统的配置。
二、气候因素:虽然气温、台风、洪水、干旱等自然气候因素都是云数据中心布局的影响因素,但温度条件是需要重点考虑的气候因素。所在地的常年平均气温是影响云数据中心能耗的决定性因素之一,甚至是决定PUE高低的重要因素。
三、地质条件:地壳稳定,发生地质灾害的可能性小,为数据中心的阶段内的稳定运营提供保证。
目前我国数据中心产业虽然已经开始呈现出向规模化、集中化、绿色化、布局合理化发展的趋势,也涌现出一些成功的案例。比如鄂尔多斯大数据中心,该数据中心机房严格按照国际领先的行业设计标准,集IDC设计理念和绿色节能技术于一体,与世界一流IDC保持同步,能够为全社会提供同等级服务的数据中心。
⑶ 中国将建设哪些大数据工程
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理专和处理的数据集合属。
有人把数据比喻为蕴 藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。
大数据的价值体现在以下几个方面:
1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;
2) 做小而美模式的中长尾企业可以利用大数据做服务转型;
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。