做算法开发
A. 如何做算法研究
一、DSP与TI
为什么提到电机控制很多人首先会联想到DSP?而谈到DSP控制总绕不过TI,首先DSP芯片是一种具有特殊结构的微处理器。该芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,提供特殊的指令,可以用来快速地实现各种数字信号处理算法。基于DSP芯片构成的控制系统事实上是一个单片系统,因此整个控制所需的各种功能都可由DSP芯片来实现。因此,可以减小目标系统的体积,减少外部元件的个数,增加系统的可靠性。优点是稳定性好、精度高、处理速度快,目前在变频器、伺服行业有大量使用。主流的DSP厂家有美国德州仪器(Texas Instruments,TI)、ADI、motorola、杰尔等其他厂商,其中TI的TMS320系列以数字控制和运动控制为主,以价格低廉、简单易用、功能强大很是受欢迎。
二、常见的电机控制算法及研究方法
1、电机控制按工作电源种类划分:可分为直流电机和交流电机。按结构和工作原理可划分:可分为直流电动机、异步电动机、同步电动机。不同的电机所采用的驱动方式也是不相同的,这次主要介绍伺服电机,伺服主要靠脉冲来定位,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因此,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,同时又与伺服电机接受的脉冲形成了呼应,或者叫闭环,进而很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。伺服电机相比较普通电机优势在于控制精度、低频扭矩,过载能力,响应速度等方面,所以被广泛使用于机器人,数控机床,注塑,纺织等行业
三、PWM控制及测试结果
脉冲宽度调制是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中,脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变
还是软件开发好些,毕竟这个是有机会获得股份以及可能成为BOSS的行当
C. 做算法工程师是什么样的工作体验
算法工程师是一个非常高端的职位;
专业要求:计算机、电子、通信、数学等相关专业;
学历要求:本科及其以上的学历,大多数是硕士学历及其以上;
语言要求:英语要求是熟练,基本上能阅读国外专业书刊;
必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。
简介:
算法工程师根据研究领域来分主要有音频/算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。
在计算机音和图形图形图像技术等二维信息算法处理方面目前比较先进的处理算法:机器视觉成为此类算法研究的核心;另外还有2D转3D算法(2D-to-3D conversion),去隔行算法(de-interlacing),运动估计运动补偿算法(Motion estimation/Motion Compensation),去噪算法(Noise Rection),缩放算法(scaling),锐化处理算法(Sharpness),超分辨率算法(Super Resolution),手势识别(gesture recognition),人脸识别(face recognition)。
在通信物理层等一维信息领域目前常用的算法:无线领域的RRM、RTT,传送领域的调制解调、信道均衡、信号检测、网络优化、信号分解等。
另外数据挖掘、互联网搜索算法也成为当今的热门方向。
算法工程师逐渐往人工智能方向发展。
D. 研究生做算法还是开发
研究生做开发的比较常见,做算法的比较少,很多公司算法岗的hc比开发岗少很多,足以见得算法岗的难和门槛高。
E. 怎样成为算法工程师
1.算法工程师要求很高的数学水平和逻辑思维。其实语言是次要的,语言只是表达的方式而已。
2 你想成为算法工程师还需要一定的英文水准,因为看中文书你完全体会不到原滋味。
3 不要太拘泥于教材。
F. 游戏开发对算法的要求高吗之前做了几年的游戏,一直都在做业务开发,感觉好多都流程化了,我想以后做
主要是最近游戏引擎发展迅速,慢慢的游戏开发也要变成码农了,不过版游戏开发企划和美工就是重权点,程序员一直不被重视。
但好的大型游戏公司还是需要算法工程师的,各种优化,还有游戏特效,更重要的是,码农会过时,算法工程师不会过时,无论开发语言变成什么,平台变成什么,原理都一样。
G. 做算法的对编程要求有多高
在计算机软件专业、及其相关的软件研究工作中,关于做计算机软件算法的问题,当然还是必须要至少精通:《计算机算法分析及其复杂性理论》、《数据结构》课程,然后还必须要精通掌握:高级语言的编程(例如:C 语言、C++、JAVA、Python语言等)。
只有这两个方面同时满足了,才能够真正利用所学的这些理论知识,带领一个软件研发团队做软件开发工作。否则的话,永远只能够是给别人做程序员(即:算法和数据结构都是由别人给提供好,自己只能够进行程序代码的实现),而自己无法提出一个独立的算法。
这就是普通的程序员和那些教授、博士生导师的最大的区别。即:虽然那些教授、博导不能够自己亲自编程实现应用软件的代码,但是他们可以带领一个软件研究团队完成一个功能相当复杂的系统设计。
H. 成为算法工程师需要学习哪些课程
算法工程师要求很高的数学水平和逻辑思维。需要学习高数,线性代数,离散数学,数据结构和计算机等课程
I. 做深度学习算法,还是去较大的互联网做开发测试
现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有人一样的智慧;而这样一种技术在将来无疑是前景无限的。那么深度学习本质上又是一种什么样的技术呢?
深度学习是什么
深度学习是机器学习领域中对模式(声音、图像等等)进行建模的一种方法,它也是一种基于统计的概率模型。在对各种模式进行建模之后,便可以对各种模式进行识别了,例如待建模的模式是声音的话,那么这种识别便可以理解为语音识别。而类比来理解,如果说将机器学习算法类比为排序算法,那么深度学习算法便是众多排序算法当中的一种(例如冒泡排序),这种算法在某些应用场景中,会具有一定的优势。
深度学习的“深度”体现在哪里
论及深度学习中的“深度”一词,人们从感性上可能会认为,深度学习相对于传统的机器学习算法,能够做更多的事情,是一种更为“高深”的算法。而事实可能并非我们想象的那样,因为从算法输入输出的角度考虑,深度学习算法与传统的有监督机器学习算法的输入输出都是类似的,无论是最简单的Logistic Regression,还是到后来的SVM、boosting等算法,它们能够做的事情都是类似的。正如无论使用什么样的排序算法,它们的输入和预期的输出都是类似的,区别在于各种算法在不同环境下的性能不同。
那么深度学习的“深度”本质上又指的是什么呢?深度学习的学名又叫深层神经网络(Deep Neural Networks ),是从很久以前的人工神经网络(Artificial Neural Networks)模型发展而来。这种模型一般采用计算机科学中的图模型来直观的表达,而深度学习的“深度”便指的是图模型的层数以及每一层的节点数量,相对于之前的神经网络而言,有了很大程度的提升。
深度学习也有许多种不同的实现形式,根据解决问题、应用领域甚至论文作者取名创意的不同,它也有不同的名字:例如卷积神经网络(Convolutional Neural Networks)、深度置信网络(Deep Belief Networks)、受限玻尔兹曼机(Restricted Boltzmann Machines)、深度玻尔兹曼机(Deep Boltzmann Machines)、递归自动编码器(Recursive Autoencoders)、深度表达(Deep Representation)等等。不过究其本质来讲,都是类似的深度神经网络模型。
既然深度学习这样一种神经网络模型在以前就出现过了,为什么在经历过一次没落之后,到现在又重新进入人们的视线当中了呢?这是因为在十几年前的硬件条件下,对高层次多节点神经网络的建模,时间复杂度(可能以年为单位)几乎是无法接受的。在很多应用当中,实际用到的是一些深度较浅的网络,虽然这种模型在这些应用当中,取得了非常好的效果(甚至是the state of art),但由于这种时间上的不可接受性,限制了其在实际应用的推广。而到了现在,计算机硬件的水平与之前已经不能同日而语,因此神经网络这样一种模型便又进入了人们的视线当中。
“ 2012年6月,《纽约时报》披露了Google Brain项目,吸引了公众的广泛关注。这个项目是由著名的斯坦福大学机器学习教授Andrew Ng和在大规模计算机系统方面的世界顶尖专家Jeff Dean共同主导,用16000个CPU Core的并行计算平台训练一种称为“深层神经网络”(DNN,Deep Neural Networks) ”
从Google Brain这个项目中我们可以看到,神经网络这种模型对于计算量的要求是极其巨大的,为了保证算法实时性,需要使用大量的CPU来进行并行计算。
当然,深度学习现在备受关注的另外一个原因,当然是因为在某些场景下,这种算法模式识别的精度,超过了绝大多数目前已有的算法。而在最近,深度学习的提出者修改了其实现代码的Bug之后,这种模型识别精度又有了很大的提升。这些因素共同引起了深层神经网络模型,或者说深度学习这样一个概念的新的热潮。
深度学习的优点
为了进行某种模式的识别,通常的做法首先是以某种方式,提取这个模式中的特征。这个特征的提取方式有时候是人工设计或指定的,有时候是在给定相对较多数据的前提下,由计算机自己总结出来的。深度学习提出了一种让计算机自动学习出模式特征的方法,并将特征学习融入到了建立模型的过程中,从而减少了人为设计特征造成的不完备性。而目前以深度学习为核心的某些机器学习应用,在满足特定条件的应用场景下,已经达到了超越现有算法的识别或分类性能。
深度学习的缺点
深度学习虽然能够自动的学习模式的特征,并可以达到很好的识别精度,但这种算法工作的前提是,使用者能够提供“相当大”量级的数据。也就是说在只能提供有限数据量的应用场景下,深度学习算法便不能够对数据的规律进行无偏差的估计了,因此在识别效果上可能不如一些已有的简单算法。另外,由于深度学习中,图模型的复杂化导致了这个算法的时间复杂度急剧提升,为了保证算法的实时性,需要更高的并行编程技巧以及更好更多的硬件支持。所以,目前也只有一些经济实力比较强大的科研机构或企业,才能够用深度学习算法,来做一些比较前沿而又实用的应用。