太阳能优化器
『壹』 太阳能逆变器的特点
由于建筑的多样性,势必导致太阳能电池板安装的多样性,为了使太阳能的转换效率最高同时又兼顾建筑的外形美观,这就要求我们的逆变器的多样化,来实现最佳方式的太阳能转换. 组串逆变器已成为现在国际市场上最流行的逆变器。组串逆变器是基于模块化概念基础上的,每个光伏组串(1kW-5kW)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网。许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点
与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引入“主-从”的概念,使得在系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。最新的概念为几个逆变器相互组成一个“团队”来代替“主-从”的概念,使得系统的可靠性又进了一步。 太阳能逆变器的效率指由于对可再生能源的需求,太阳能逆变器 (光电逆变器) 的市场正在不断增长。而这些逆变器需要极高的效率和可靠性。对这些逆变器中采用的功率电路进行了考察,并推荐了针对开关和整流器件的最佳选择。光电逆变器的一般结构如图1所示,有三种不同的逆变器可供选择。太阳光照射在通过串联方式连接的太阳能模块上,每一个模块都包含了一组串联的太阳能电池(Solar Cell)单元。太阳能模块产生的直流 (DC) 电压在几百伏的数量级,具体数值根据模块阵列的光照条件、电池的温度及串联模块的数量而定。
这类逆变器的首要功能是把输入的 DC电压转换为一稳定的值。该功能通过升压转换器来实现,并需要升压开关和升压二极管。在第一种结构中,升压级之后是一个隔离的全桥变换器。全桥变压器的作用是提供隔离。输出上的第二个全桥变换器是用来从第一级的全桥变换器的直流DC变换成交流 (AC) 电压。其输出再经由额外的双触点继电器开关连接到AC电网网络之前被滤波,目的是在故障事件中提供安全隔离及在夜间与供电电网隔离。第二种结构是非隔离方案。其中,AC交流电压由升压级输出的DC电压直接产生。第三种结构利用功率开关和功率二极管的创新型拓扑结构,把升压和AC交流产生部分的功能整合在一个专用拓扑中尽管太阳能电池板的转换效率非常低,让逆变器的效率尽可能接近100% 却非常重要。在德国,安装在朝南屋顶上的3kW串联模块预计每年可发电2550 kWh。若逆变器效率从95% 增加到 96%,每年便可以多发电25kWh。而利用额外的太阳能模块产生这25kWh的费用与增加一个逆变器相当。由于效率从95% 提高到 96% 不会使到逆变器的成本加倍,故对更高效的逆变器进行投资是必然的选择。对新兴设计而言,以最具成本效益地提高逆变器效率是关键的设计准则。至于逆变器的可靠性和成本则是另外两个设计准则。更高的效率可以降低负载周期上的温度波动,从而提高可靠性,因此,这些准则实际上是相关联的。模块的使用也会提高可靠性。 图1所示的所有拓扑都需要快速转换的功率开关。升压级和全桥变换级需要快速转换二极管。此外,专门为低频 (100Hz) 转换而优化的开关对这些拓扑也很有用处。对于任何特定的硅技术,针对快速转换优化的开关比针对低频转换应用优化的开关具有更高的导通损耗。
升压级一般设计为连续电流模式转换器。根据逆变器所采用的阵列中太阳能模块的数量,来选者使用600V还是1200V的器件。功率开关的两个选择是MOSFET和 IGBT。一般而言,MOSFET比IGBT可以工作在更高的开关频率下。此外,还必须始终考虑体二极管的影响:在升压级的情况下并没有什么问题,因为正常工作模式下体二极管不导通。MOSFET的导通损耗可根据导通阻抗RDS(ON)来计算,对于给定的MOSFET系列,这与有效裸片面积成比例关系。当额定电压从600V 变化到1200V时,MOSFET的传导损耗会大大增加,因此,即使额定RDS(ON) 相当,1200V的 MOSFET也不可用或是价格太高。
对于额定600V的升压开关,可采用超结MOSFET。对高频开关应用,这种技术具有最佳的导通损耗。TO-220封装、RDS(ON) 值低于100毫欧的MOSFET和采用TO-247封装、RDS(ON) 值低于50毫欧的MOSFET。对于需要1200V功率开关的太阳能逆变器,IGBT是适当的选择。较先进的IGBT技术,比如NPT Trench 和 NPT Field Stop,都针对降低导通损耗做了优化,但代价是较高的开关损耗,这使得它们不太适合于高频下的升压应用。
在旧有NPT平面技术的基础上开发了一种可以提高高开关频率的升压电路效率的器件FGL40N120AND,具有43uJ/A的EOFF ,比较采用更先进技术器件的EOFF为80uJ/A,但要获得这种性能却非常困难。FGL40N120AND器件的缺点在于饱和压降VCE(SAT) (3.0V 相对于125ºC的 2.1V) 较高,不过它在高升压开关频率下开关损耗很低的优点已足以弥补这一切。该器件还集成了反并联二极管。在正常升压工作下,该二极管不会导通。然而,在启动期间或瞬变情况下,升压电路有可能被驱使进入工作模式,这时该反并联二极管就会导通。由于IGBT本身没有固有的体二极管,故需要这种共封装的二极管来保证可靠的工作。对升压二极管,需要Stealth™ 或碳硅二极管这样的快速恢复二极管。碳硅二极管具有很低的正向电压和损耗。在选择升压二极管时,必须考虑到反向恢复电流 (或碳硅二极管的结电容) 对升压开关的影响,因为这会导致额外的损耗。在这里,新推出的Stealth II 二极管 FFP08S60S可以提供更高的性能。当VDD=390V、 ID=8A、di/dt=200A/us,且外壳温度为100ºC时,计算得出的开关损耗低于FFP08S60S的参数205mJ。而采用ISL9R860P2 Stealth 二极管,这个值则达225mJ。故此举也提高了逆变器在高开关频率下的效率。 MOSFET全桥滤波之后,输出桥产生一个50Hz的正弦电压及电流信号。一种常见的实现方案是采用标准全桥结构 (图2)。图中若左上方和右下方的开关导通,则在左右终端之间加载一个正电压;右上方和左下方的开关导通,则在左右终端之间加载一个负电压。对于这种应用,在某一时段只有一个开关导通。一个开关可被切换到PWM高频下,另一开关则在50Hz低频下。由于自举电路依赖于低端器件的转换,故低端器件被切换到PWM高频下,而高端器件被切换到50Hz低频下。这应用采用了600V的功率开关,故600V超结MOSFET非常适合这个高速的开关器件。由于这些开关器件在开关导通时会承受其它器件的全部反向恢复电流,因此快速恢复超结器件如600V FCH47N60F是十分理想的选择。它的RDS(ON) 为73毫欧,相比其它同类的快速恢复器件其导通损耗很低。当这种器件在50Hz下进行转换时,无需使用快速恢复特性。这些器件具有出色的dv/dt和di/dt特性,比较标准超结MOSFET可提高系统的可靠性。
另一个值得探讨的选择是采用FGH30N60LSD器件。它是一颗饱和电压VCE(SAT) 只有1.1V的30A/600V IGBT。其关断损耗EOFF非常高,达10mJ ,故只适合于低频转换。一个50毫欧的MOSFET在工作温度下导通阻抗RDS(ON) 为100毫欧。因此在11A时,具有和IGBT的VCE(SAT) 相同的VDS。由于这种IGBT基于较旧的击穿技术,VCE(SAT) 随温度的变化不大。因此,这种IGBT可降低输出桥中的总体损耗,从而提高逆变器的总体效率。FGH30N60LSD IGBT在每半周期从一种功率转换技术切换到另一种专用拓扑的做法也十分有用。IGBT在这里被用作拓扑开关。在较快速的转换时则使用常规及快速恢复超结器件。对于1200V的专用拓扑及全桥结构,前面提到的FGL40N120AND是非常适合于新型高频太阳能逆变器的开关。当专用技术需要二极管时,Stealth II、Hyperfast™ II 二极管及碳硅二极管是很好的解决方案。
『贰』 现在光伏组件都安装有功率优化器吗
太阳能功率优化器其主要概念是将太阳能逆变器中的最大功率追踪(Maximum Power Point Tracking;MPPT)运算功能独立版出来,安置权于每块模块背后,使每块模块可独立进行MPPT追踪。
正常的并网逆变器,本身就应该有这个功能,被独立出来的理由,是针对最小型离网式逆变器没有MPPT功能比较有用。
光伏组件,不会具备这个功能的,这都是施工方案的选项。
『叁』 怎么鉴别太阳能热水器的优劣
太阳能集热器主要由支架、储热部分水箱、集热部件真空管以及控制系统组成。太阳能热水系统是一个综合系统,只有各组成部分都能够达到优化才能保证整个热水器是好用的。就是说,真空管的吸热性能要好,蓝黑色的真空管或紫黑色的真空管吸热效果比较好;储热水箱的保温效果要好,一般保温层厚度要达到5cm以上,聚氨酯发泡材料的比较好,颜色浅绿色的是无氟发泡,不会腐蚀内胆,比较好。支架比较坚固的好。控制器用品牌配套的好。
『肆』 提高太阳能热水器效能有哪些方法
使用吸收率最好的真空管,科学的设计合理的优化方式才是提高太阳能能效的唯一方式。谢谢孟祥
『伍』 太阳能板功率优化器的作用大吗
太阳能板功率优化器的作用大
『陆』 光伏优化器能提高多少效率
建议看看中节能太阳能科技有限公司
进入网络输入“分布式MPPT技术电源优化版器在光伏电站中的权应用”
一篇关于光伏优化器的介绍,以及其关于利用美国国家半导体的一款芯片产品solar magic进行的1KW系统的数据比较测试
测试结果显示:
1. 无阴影遮挡的情况:
会有3-5%的效率提升
2. 有阴影遮挡的情况
阴影越明显,效率的提升越明显
具体的结果可以参考提供的文章的数据
数据仅供参考
『柒』 太阳能发电的优化方法2
太阳能发电系统分为离网发电系统、并网发电系统及分布式发电系统:
1、离网发电系统主要由太阳能电池组件、控制器、蓄电池组成,如输出电源为交流220V或110V,还需要配置逆变器。
2、并网发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。并网发电系统有集中式大型并网电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,还没有太大发展。而分散式小型并网发电系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网发电的主流。
3、分布式发电系统,又称分散式发电或分布式供能,是指在用户现场或靠近用电现场配置较小的光伏发电供电系统,以满足特定用户的需求,支持现存配电网的经济运行,或者同时满足这两个方面的要求。
分布式光伏发电系统的基本设备包括光伏电池组件、光伏方阵支架、直流汇流箱、直流配电柜、并网逆变器、交流配电柜等设备,另外还有供电系统监控装置和环境监测装置。其运行模式是在有太阳辐射的条件下,光伏发电系统的太阳能电池组件阵列将太阳能转换输出的电能,经过直流汇流箱集中送入直流配电柜,由并网逆变器逆变成交流电供给建筑自身负载,多余或不足的电力通过联接电网来调节。
『捌』 光伏优化器能不能抑制pid效应
PID效应(Potential Inced Degradation)又称电势诱导衰减,是电池组件的封装材料和其上表面及版下表面的材料,电池片与其权接地金属边框之间的高电压作用下出现离子迁移,而造成组件性能衰减的现象。
危害为:
下表为组件PID效应测试前后的参数及I-V曲线对比【1】,通过对比明显可以看出PID效应对太阳能电池组件的输出功率影响巨大,是光伏电站发电量的“恐怖杀手”
『玖』 太阳能发电的优化方法
太阳能功率优化器其主要概念是将太阳能逆变器中的最大功率追踪(Maximum Power Point Tracking;MPPT)运算功能独立出来,安置于每块模块背后,使每块模块可独立进行MPPT追踪。
正常的并网逆变器,本身就应该有这个功能,被独立出来的理由,是针对最小型离网式逆变器没有MPPT功能比较有用。
光伏组件,不会具备这个功能的,这都是施工方案的选项。
『拾』 针对串联功率优化器结构每个光伏怎么确定
太阳能功率优化器其主要概念是将太阳能逆变器中的最大功率追踪(Maximum Power Point Tracking;MPPT)运算功能独版立出来,安置权于每块模块背后,使每块模块可独立进行MPPT追踪。
正常的并网逆变器,本身就应该有这个功能,被独立出来的理由,是针对最小型离网式逆变器没有MPPT功能比较有用。
光伏组件,不会具备这个功能的,这都是施工方案的选项。