python机器学习实战书十五章MapRece, mrjob在SVM上的应用实例上 有能在python3.7上顺利运行的代码

第一部分分类第1章机器学习基础21.1 何谓机器学习31.1.1 传感器和海量数据41.1.2 机器学习非常重要51.2 关键术语51.3 机器学习的主要任务71.4 如何选择合适的算法81.5 开发机器学习应用程序的步骤91.6 Python语言的优势101.6.1 可执行伪代码101.6.2 Python比较流行101.6.3 Python语言的特色111.6.4 Python语言的缺点111.7 NumPy函数库基础121.8 本章小结13第2章k-近邻算法 152.1 k-近邻算法概述152.1.1 准备:使用Python导入数据172.1.2 从文本文件中解析数据192.1.3 如何测试分类器202.2 示例:使用k-近邻算法改进约会网站的配对效果202.2.1 准备数据:从文本文件中解析数据212.2.2 分析数据:使用Matplotlib创建散点图232.2.3 准备数据:归一化数值252.2.4 测试算法:作为完整程序验证分类器262.2.5 使用算法:构建完整可用系统272.3

Ⅱ python svm error 为什么执行 终止了

一般来说是通过梯度下降(这里是求最大值,所以应该叫上升)等版算法每一次迭代对权所有m个变量αi也就是α向量进行一次性优化
通过误差每次迭代调整α向量中每个元素的值。
而坐标上升法(坐标上升与坐标下降可以看做是一对,坐标上升是用来求解max最优化问题,坐标下降用于求min最优化问题)的思想是每次迭代只调整一个变量αi的值,其他变量的值在这次迭代中固定不变。

Ⅲ scikit-learn中的SVM是用什么算法实现求解凸优化的

作为scikit-learn的一个小contributor,来简单说下个人看法吧。 首先,我认为这取决于题主本身在Python、机器学习方面的水平。因为题主没有提供这方面信息,我也只能简单介绍一下scikit-learn的现状,让题主自行判断。

Ⅳ 如何用Python实现支持向量机

看这个文章
blog.csdn.net/zouxy09/article/details/17292011
机器学习算法与Python实践之(四)支持向量机(SVM)实现

Ⅳ 如何用python实现smo算法

在ml中常见的优化算法基本都是: sgd 这种对每个单变量进行同步更新 als(交替最小专二乘)/smo(序列最小优化)这种交替(固属定一个单变量,优化另一个单变量)思路。如果你熟悉smo,那么als就也可以理解了。 其它(希望更多的人补充)

Ⅵ auc 论文里的 怎么计算 python svm

利用Python画ROC曲线,以及AUC值的计算\
前言
ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣。这篇文章将先简单的介绍ROC和AUC,而后用实例演示如何python作出ROC曲线图以及计算AUC。
AUC介绍
AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,但是有时候模型是单独的或者自己编写的,此时想要评估训练模型的好坏就得自己搞一个AUC计算模块,本文在查询资料时发现libsvm-tools有一个非常通俗易懂的auc计算,因此抠出来用作日后之用。
AUC计算
AUC的计算分为下面三个步骤:
1、计算数据的准备,如果模型训练时只有训练集的话一般使用交叉验证的方式来计算,如果有评估集(evaluate)一般就可以直接计算了,数据的格式一般就是需要预测得分以及其目标类别(注意是目标类别,不是预测得到的类别)
2、根据阈值划分得到横(X:False Positive Rate)以及纵(Y:True Positive Rate)点
3、将坐标点连成曲线之后计算其曲线下面积,就是AUC的值
直接上python代码
#! -*- coding=utf-8 -*-
import pylab as pl
from math import log,exp,sqrt
evaluate_result="you file path"
db = [] #[score,nonclk,clk]
pos, neg = 0, 0
with open(evaluate_result,'r') as fs:
for line in fs:
nonclk,clk,score = line.strip().split('\t')
nonclk = int(nonclk)
clk = int(clk)
score = float(score)
db.append([score,nonclk,clk])
pos += clk
neg += nonclk
db = sorted(db, key=lambda x:x[0], reverse=True)
#计算ROC坐标点
xy_arr = []
tp, fp = 0., 0.
for i in range(len(db)):
tp += db[i][2]
fp += db[i][1]
xy_arr.append([fp/neg,tp/pos])
#计算曲线下面积
auc = 0.
prev_x = 0
for x,y in xy_arr:
if x != prev_x:
auc += (x - prev_x) * y
prev_x = x
print "the auc is %s."%auc
x = [_v[0] for _v in xy_arr]
y = [_v[1] for _v in xy_arr]
pl.title("ROC curve of %s (AUC = %.4f)" % ('svm',auc))
pl.xlabel("False Positive Rate")
pl.ylabel("True Positive Rate")
pl.plot(x, y)# use pylab to plot x and y
pl.show()# show the plot on the screen
输入的数据集可以参考svm预测结果
其格式为:
nonclk \t clk \t score
其中:
1、nonclick:未点击的数据,可以看做负样本的数量
2、clk:点击的数量,可以看做正样本的数量
3、score:预测的分数,以该分数为group进行正负样本的预统计可以减少AUC的计算量
运行的结果为:
如果本机没安装pylab可以直接注释依赖以及画图部分
注意
上面贴的代码:
1、只能计算二分类的结果(至于二分类的标签随便处理)
2、上面代码中每个score都做了一次阈值,其实这样效率是相当低的,可以对样本进行采样或者在计算横轴坐标时进行等分计算

Ⅶ 可以使用python多进程实现smote算法吗

import numpy as np
import csv
#import svm
import pandas as pd
import matplotlib.pyplot as plt
dataset=pd.read_csv(r'xxx.csv')
array=np.array(dataset)
y= np.array(array[:,0], dtype=np.int64)
x = np.array(array[:,1: array.shape[1]], dtype=np.double)
from sklearn.cross_validation import train_test_split
from imblearn.over_sampling import SMOTE
from imblearn.combine import SMOTEENN
def data_prepration(x):
x_features= x.ix[:,x.columns != "y_label_name"]
x_labels=x.ix[:,x.columns=="y_label_name"]
x_features_train,x_features_test,x_labels_train,x_labels_test = train_test_split(x_features,x_labels,test_size=0.3,random_state = 0)
print("length of training data")
print(len(x_features_train))
print("length of test data")
print(len(x_features_test))
return(x_features_train,x_features_test,x_labels_train,x_labels_test)
data_train_x,data_test_x,data_train_y,data_test_y=data_prepration(dataset)
os= SMOTE(random_state=0)
os_data_x,os_data_y=os.fit_sample(data_train_x.values,data_train_y.values.ravel())
columns = data_train_x.columns
os_data_x = pd.DataFrame(data=os_data_x,columns=columns )
print (len(os_data_x))
os_data_y= pd.DataFrame(data=os_data_y,columns=["credit_status"])
# 现在检查下抽样后的数据
print("length of oversampled data is ",len(os_data_x))
print("Number of normal transcation",len(os_data_y[os_data_y["credit_status"]==1]))
print("Number of fraud transcation",len(os_data_y[os_data_y["credit_status"]==0]))
print("Proportion of Normal data in oversampled data is ",len(os_data_y[os_data_y["credit_status"]==0])/len(os_data_x))
print("Proportion of fraud data in oversampled data is ",len(os_data_y[os_data_y["credit_status"]==1])/len(os_data_x))
newtraindata=pd.concat([os_data_x,os_data_y],axis=1)
newtestdata=pd.concat([data_test_x,data_test_y],axis=1)
#train_csv_file= open(r'D:\Data\MijiaOldCustomer\train.csv','wb')
#writer = csv.writer(train_csv_file)
#writer.writerows(newtraindata)
newtraindata.to_csv(r'train.csv',sep=',')
newtestdata.to_csv(r'test.csv
',sep=',')

Ⅷ 谁可以给我SVM分类算法的源代码

专业的可以看LIBSVM,如果只是想学习下具体实现可以参考这个地方:内http://www.fuqingchuan.com/2014/03/222.html, 这里用100行python代码就实现容了SVM!

Ⅸ python svm 怎么训练模型

支持向量机SVM(Support Vector Machine)是有监督的分类预测模型,本篇文章使用机器学习库-learn中的手写数字数据集介绍使用Python对SVM模型进行训练并对手写数字进行识别的过程。

准备工作

手写数字识别的原理是将数字的图片分割为8X8的灰度值矩阵,将这64个灰度值作为每个数字的训练集对模型进行训练。手写数字所对应的真实数字作为分类结果。在机器学习sklearn库中已经包含了不同数字的8X8灰度值矩阵,因此我们首先导入sklearn库自带的datasets数据集。然后是交叉验证库,SVM分类算法库,绘制图表库等。

12345678910#导入自带数据集from sklearn import datasets#导入交叉验证库from sklearn import cross_validation#导入SVM分类算法库from sklearn import svm#导入图表库import matplotlib.pyplot as plt#生成预测结果准确率的混淆矩阵from sklearn import metrics

读取并查看数字矩阵

从sklearn库自带的datasets数据集中读取数字的8X8矩阵信息并赋值给digits。

12#读取自带数据集并赋值给digitsdigits = datasets.load_digits()

查看其中的数字9可以发现,手写的数字9以64个灰度值保存。从下面的8×8矩阵中很难看出这是数字9。

12#查看数据集中数字9的矩阵digits.data[9]

以灰度值的方式输出手写数字9的图像,可以看出个大概轮廓。这就是经过切割并以灰度保存的手写数字9。它所对应的64个灰度值就是模型的训练集,而真实的数字9是目标分类。我们的模型所要做的就是在已知64个灰度值与每个数字对应关系的情况下,通过对模型进行训练来对新的手写数字对应的真实数字进行分类。

1234#绘制图表查看数据集中数字9的图像plt.imshow(digits.images[9], cmap=plt.cm.gray_r, interpolation='nearest')plt.title('digits.target[9]')plt.show()


从混淆矩阵中可以看到,大部分的数字SVM的分类和预测都是正确的,但也有个别的数字分类错误,例如真实的数字2,SVM模型有一次错误的分类为1,还有一次错误分类为7。



Ⅹ python调用libSVM异常,svm_save_model(modelName,model)。总说第一个参数类型错误

可以看看python文件夹下面的README。第一个参数是:保存model的文件名,字符串类型。回第二个参数就是答svm_train返回的model。
README里面有详细的例子。按照你的错误,
model_file_name是字符串类型吗?检查一下就行吧