python进程间通信怎么理解

在2.6才开始使用
multiprocessing 是一个使用方法类似threading模块的进程模块。允许程序员做并行开发。并且可以在UNIX和Windows下运行。
通过创建一个Process 类型并且通过调用call()方法spawn一个进程。

一个比较简单的例子:
#!/usr/bin/env python

from multiprocessing import Process
import time
def f(name):
time.sleep(1)
print 'hello ',name
print os.getppid() #取得父进程ID
print os.getpid() #取得进程ID
process_list = []
if __name__ == '__main__':
for i in range(10):
p = Process(target=f,args=(i,))
p.start()
process_list.append(p)
for j in process_list:
j.join()

进程间通信:
有两种主要的方式:Queue、Pipe
1- Queue类几乎就是Queue.Queue的复制,示例:
#!/usr/bin/env python

from multiprocessing import Process,Queue
import time
def f(name):
time.sleep(1)
q.put(['hello'+str(name)])
process_list = []
q = Queue()
if __name__ == '__main__':
for i in range(10):
p = Process(target=f,args=(i,))
p.start()
process_list.append(p)
for j in process_list:
j.join()
for i in range(10):
print q.get()
2- Pipe 管道
#!/usr/bin/env python

from multiprocessing import Process,Pipe
import time
import os

def f(conn,name):
time.sleep(1)
conn.send(['hello'+str(name)])
print os.getppid(),'-----------',os.getpid()
process_list = []
parent_conn,child_conn = Pipe()
if __name__ == '__main__':
for i in range(10):
p = Process(target=f,args=(child_conn,i))
p.start()
process_list.append(p)
for j in process_list:
j.join()
for p in range(10):
print parent_conn.recv()
Pipe()返回两个连接类,代表两个方向。如果两个进程在管道的两边同时读或同时写,会有可能造成corruption.

进程间同步
multiprocessing contains equivalents of all the synchronization primitives from threading.
例如,可以加一个锁,以使某一时刻只有一个进程print
#!/usr/bin/env python

from multiprocessing import Process,Lock
import time
import os

def f(name):
lock.acquire()
time.sleep(1)
print 'hello--'+str(name)
print os.getppid(),'-----------',os.getpid()
lock.release()
process_list = []
lock = Lock()
if __name__ == '__main__':
for i in range(10):
p = Process(target=f,args=(i,))
p.start()
process_list.append(p)
for j in process_list:
j.join()

进程间共享状态 Sharing state between processes
当然尽最大可能防止使用共享状态,但最终有可能会使用到.
1-共享内存
可以通过使用Value或者Array把数据存储在一个共享的内存表中
#!/usr/bin/env python

from multiprocessing import Process,Value,Array
import time
import os

def f(n,a,name):
time.sleep(1)
n.value = name * name
for i in range(len(a)):
a[i] = -i
process_list = []
if __name__ == '__main__':
num = Value('d',0.0)
arr = Array('i',range(10))
for i in range(10):
p = Process(target=f,args=(num,arr,i))
p.start()
process_list.append(p)
for j in process_list:
j.join()
print num.value
print arr[:]
输出:
jimin@Jimin:~/projects$ python pp.py
81.0
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
'd'和'i'参数是num和arr用来设置类型,d表示一个双精浮点类型,i表示一个带符号的整型。
更加灵活的共享内存可以使用multiprocessing.sharectypes模块

Server process
Manager()返回一个manager类型,控制一个server process,可以允许其它进程通过代理复制一些python objects
支持list,dict,Namespace,Lock,Semaphore,BoundedSemaphore,Condition,Event,Queue,Value,Array
例如:
#!/usr/bin/env python

from multiprocessing import Process,Manager
import time
import os

def f(d,name):
time.sleep(1)
d[name] = name * name
print d
process_list = []
if __name__ == '__main__':
manager = Manager()
d = manager.dict()
for i in range(10):
p = Process(target=f,args=(d,i))
p.start()
process_list.append(p)
for j in process_list:
j.join()
print d
输出结果:
{2: 4}
{2: 4, 3: 9}
{2: 4, 3: 9, 4: 16}
{1: 1, 2: 4, 3: 9, 4: 16}
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 8: 64}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
Server process managers比共享内存方法更加的灵活,一个单独的manager可以被同一网络的不同计算机的多个进程共享。
比共享内存更加的缓慢

使用工作池Using a pool of workers
Pool类代表 a pool of worker processes.
It has methods which allows tasks to be offloaded to the worker processes in a few different ways.

❷ Python 有没有和 C/C++ 进程共享内存的方式

通过share memory 取对象的例子, c write object into memory map, python read it by call dll api.

So there still questions you should consider how to guarantee the process share security. Good luck..
----python part----

from ctypes import *
#windll.kernel32.SetLastError(-100)
print windll.kernel32.GetLastError()
getMessage=windll.kernel32.OpenFileMappingA
getMessage.restype = c_int
handle=getMessage(1,False,"Global\\MyFileMappingObject")
if handle ==0:
print 'open file mapping handle is Null'

else:
mapView=windll.kernel32.MapViewOfFile
mapView.restype = c_char_p
print mapView(handle,1,0,0,256)

----c part----
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include <tchar.h>

#define BUF_SIZE 256
TCHAR szName[] = TEXT("Global\\MyFileMappingObject");
TCHAR szMsg[] = TEXT("Message from first process.");

int _tmain()
{
HANDLE hMapFile;
LPCTSTR pBuf;

hMapFile = CreateFileMapping(
INVALID_HANDLE_VALUE, // use paging file
NULL, // default security
PAGE_READWRITE, // read/write access
0, // maximum object size (high-order DWORD)
BUF_SIZE, // maximum object size (low-order DWORD)
szName); // name of mapping object

if (hMapFile == NULL)
{
_tprintf(TEXT("Could not create file mapping object (%d).\n"),
GetLastError());
return 1;
}
pBuf = (LPTSTR)MapViewOfFile(hMapFile, // handle to map object
FILE_MAP_ALL_ACCESS, // read/write permission
0,
0,
BUF_SIZE);

if (pBuf == NULL)
{
_tprintf(TEXT("Could not map view of file (%d).\n"),
GetLastError());

CloseHandle(hMapFile);

return 1;
}

CopyMemory((PVOID)pBuf, szMsg, (_tcslen(szMsg) * sizeof(TCHAR)));
_getch();

UnmapViewOfFile(pBuf);

CloseHandle(hMapFile);

return 0;
}

❸ 用python写一段程序运行后被其他pyhon进程调用应该怎么做呢

如果你需要那个提供数据的一直运行,那你就需要pipe或者socket。

❹ python multiprocessing怎么在父进程与子进程间共享一个列表,元素是字典,字典value是一个自定义类。

在multiprocessing当中,可以用shared memory在cpu之间恭喜共享信息.我在优酷里传了个教程专门版讲这个的.你可权以在优酷里搜下(莫烦 共享内存),我还有multiprocessing的一套的教程.
你也可以订阅我的优酷频道,我会有很多python基础知识不断的更新, 希望你可以帮助到你的学习.

❺ python多进程,多线程分别是并行还是并发

并发和并行

你吃饭吃到一半,电话来了,你一直到吃完了以后才去接,这就说明你不支持并发也不支持并行。
你吃饭吃到一半,电话来了,你停了下来接了电话,接完后继续吃饭,这说明你支持并发。
你吃饭吃到一半,电话来了,你一边打电话一边吃饭,这说明你支持并行。
并发的关键是你有处理多个任务的能力,不一定要同时。
并行的关键是你有同时处理多个任务的能力。
所以我认为它们最关键的点就是:是否是『同时』。
Python 中没有真正的并行,只有并发
无论你的机器有多少个CPU, 同一时间只有一个Python解析器执行。这也和大部分解释型语言一致, 都不支持并行。这应该是python设计的先天缺陷。
javascript也是相同的道理, javascript早起的版本只支持单任务,后来通过worker来支持并发。
Python中的多线程
先复习一下进程和线程的概念
所谓进程,简单的说就是一段程序的动态执行过程,是系统进行资源分配和调度的一个基本单位。一个进程中又可以包含若干个独立的执行流,我们将这些执行流称为线程,线程是CPU调度和分配的基本单位。同一个进程的线程都有自己的专有寄存器,但内存等资源是共享的。
这里有一个更加形象的解释, 出自阮一峰大神的杰作:
http://www.ruanyifeng.com/blog/2013/04/processes_and_threads.html
Python中的thread的使用
通过 thread.start_new_thread 方法
import thread
import time

# Define a function for the thread
def print_time( threadName, delay):
count = 0
while count < 5:
time.sleep(delay)
count += 1
print "%s: %s" % ( threadName, time.ctime(time.time()) )

# Create two threads as follows
try:
thread.start_new_thread( print_time, ("Thread-1", 2, ) )
thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
print "Error: unable to start thread"

while 1:
pass

通过继承thread
#!/usr/bin/python
import threading
import time
exitFlag = 0
class myThread (threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print "Starting " + self.name
print_time(self.name, self.counter, 5)
print "Exiting " + self.name

def print_time(threadName, delay, counter):
while counter:
if exitFlag:
threadName.exit()
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1

# Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# Start new Threads
thread1.start()
thread2.start()
print "Exiting Main Thread"

线程的同步
#!/usr/bin/python

import threading
import time

class myThread (threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print "Starting " + self.name
# Get lock to synchronize threads
threadLock.acquire()
print_time(self.name, self.counter, 3)
# Free lock to release next thread
threadLock.release()

def print_time(threadName, delay, counter):
while counter:
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1

threadLock = threading.Lock()
threads = []

# Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# Start new Threads
thread1.start()
thread2.start()

# Add threads to thread list
threads.append(thread1)
threads.append(thread2)

# Wait for all threads to complete
for t in threads:
t.join()
print "Exiting Main Thread"

利用multiprocessing多进程实现并行
进程的创建
Python 中有一套类似多线程API 的的类来进行多进程开发: multiprocessing
这里是一个来自官方文档的例子:
from multiprocessing import Process
def f(name):
print 'hello', name

if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
p.join()

类似与线程,一可以通过继承process类来实现:
from multiprocessing import Process
class Worker(Process):
def run(self):
print("in" + self.name)

if __name__ == '__main__':
jobs = []
for i in range(5):
p = Worker()
jobs.append(p)
p.start()
for j in jobs:
j.join()

进程的通信
Pipe()
pipe()函数返回一对由双向通信的管道连接的对象,这两个对象通过send, recv 方法实现 信息的传递
from multiprocessing import Process, Pipe

def f(conn):
conn.send([42, None, 'hello'])
conn.close()

if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(child_conn,))
p.start()
print parent_conn.recv() # prints "[42, None, 'hello']"
p.join()

Quene
from multiprocessing import Process, Queue
def f(q):
q.put([42, None, 'hello'])

if __name__ == '__main__':
q = Queue()
p = Process(target=f, args=(q,))
p.start()
print q.get() # prints "[42, None, 'hello']"
p.join()

进程间的同步
Python 中多进程中也有类似线程锁的概念,使用方式几乎一样:
from multiprocessing import Process, Lock
def f(l, i):
l.acquire()
print 'hello world', i
l.release()
if __name__ == '__main__':
lock = Lock()
for num in range(10):
Process(target=f, args=(lock, num)).start()

进程间的共享内存
每个进程都有独自的内存,是不能相互访问的, 也行 python官方觉得通过进程通信的方式过于麻烦,提出了共享内存的概念,以下是官方给出的例子:
from multiprocessing import Process, Value, Array

def f(n, a):
n.value = 3.1415927
for i in range(len(a)):
a[i] = -a[i]

if __name__ == '__main__':
num = Value('d', 0.0)
arr = Array('i', range(10))

p = Process(target=f, args=(num, arr))
p.start()
p.join()

print num.value
print arr[:]

总结
python通过多进程实现多并行,充分利用多处理器,弥补了语言层面不支持多并行的缺点。Python, Node.js等解释型语言似乎都是通过这种方式来解决同一个时间,一个解释器只能处理一段程序的问题, 十分巧妙。

❻ 多进程开发如何共享数据:以python为例

1-redis,2-mysql 3-共享文件 4-manager模块共享内存变量

❼ 用python多进程模块multiprocessing创建的子进程如何共享内存空间

进程传递数据最简单方便的是通过Queue。这样你的自建类对象就可以放到队列中,由子进程获取。

到于Array, Var等方法,那是给高效数据共享用的。共享内存是进程通信的高级技巧。需要高性能计算的时候再研究这些方法。

Pool, Manager之类是一种封装。用得反而比较少。

python与C++共享内存里,还会使用一种Numpy中的数组。那个效率更高。

你的程序中子进程及传递参数都没有问题。你少了一句。在后面要加上
p.join()就可以了

如果不加,那么你的主进程不等子进程,它先退出了,往往操作系统会自动把子进程也杀掉。

另外子进程中的print输出有延时。即使你用sys.stdout.flush(),有时候它也会有延时。

❽ python读取共享内存数据时出现乱码

1. Python文件设置编码 utf-8 (文件前面加上 #encoding=utf-8)
2. MySQL数据库charset=utf-8
3. Python连接MySQL是加上参数 charset=utf8
4. 设置Python的默认编码为 utf-8 (sys.setdefaultencoding(utf-8)

❾ python中,为什么采取赋值共享内存的方式

通过来自share memory 取对象的例子, c write object into memory map, python read it by call dll api.

So there still questions you should consider how to guarantee the process share security. Good luck..
----python part----