❶ 大家都用什么开发工具写python

前提:用来做数据处理和相关的系统开发
刚学python时,面对简陋的官方版idle和一大堆开发平台和发行版,不知道究竟如何下手。在进行多方尝试后,我最后的选择是Anaconda + Pycharm,用anaconda集成的ipython做工作台,做一些分析和小段程序调试的工作,用Pycharm写相应脚本和程序包的开发。这两个工具都是跨平台的,也都有免费版本。
具体来说Anaconda集成了几乎所有我需要的包库,包含了我整个工作流程,做数据分析的pandas\scipy\numpy、绘图的matplotlib、读写Excel文档的xlrd/xlwt,链接SQL数据库的SQLalchemy、机器学习框架sklearn等。对于Anaconda集成的两个工作平台,Spyder——一个类似于Matlab和Rstudio的IDE,是专注于面向数据的分析的,因为其特点也主要是数据区的存在,可以即时知道变量值的变化;Ipython——一个基于cell的shell界面,可以理解为python自带shell的增强版,它将程序分成一块一块的cell,每个cell可以包含多条语句,可以单独调试运行,并将结果保存在内存中,cell之间可以相互调用,并保持一定的相互独立。
可以说有了anaconda自带的这两个工具,足够做数据处理相关的工作了(本身anaconda就是一个为了数据科学而诞生的发行版),但如果涉及到脚本程序和包的开发,感觉spyder还是有点弱,在试过IDE,代码编辑器(比如visual code、sublime等)+插件,这两种方案后,我最后选择了集成度更高的成熟IDE——Pycharm替换spyder作为主要的开发平台,看我头像也可以知道我是一个喷气大脑的死忠,他们家的IDE真的很好用~理由如下:
1、首先作为学生,可以通过e邮箱申请到Jetbrains全家桶,即便无法获取授权,pycharm的community版本免费并且功能足够
2、对于pycharm,可以方便快捷地切换python不同版本的解释器,甚至可以安装相同版本的python解释器配置不同的开发环境,这可以解决有些包之间冲突的情况,也可以针对有些框架按需装包;并且pycharm内置包管理,可以免去pip或者conda方式管理包。
3、pycharm这个IDE的颜色方案、拼写补全、函数联想、函数跳转源代码、断点调试及debug等功能都让我用的十分顺手。
总之我现在的工作流程就是,先用对我需要的功能进行设计,而后在ipython界面下设计调试每个功能模块,调试成功后放到pycharm中组合起来,写成脚本文件,最后用pycharm做调试形成成品。
2017、10、25 补充:
Pycharm作为IDE还有两个功能值得使用,一个是可以结合unitest包做我们开发模块的单元测试,另一个就是与svn、git等版本工具合作进行我们程序的版本控制,此外,在最新版的pycahrm当中,除了左侧折叠显示程序层次,下方也有我们当前光标所在位置对应的层次,并可以方便进行跳转。
总之,用pycharm写python真是越用越顺手~

❷ 一名Python程序员会哪些好用的工具

很多Python学习者想必都会有如下感悟:最开始学习Python的时候,因为没有去探索好用的工具,吃了很多苦头。后来工作中深刻体会到,合理使用开发的工具的便利和高效。今天,我就把Python程序员使用频率比较高的5款开发工具推荐给大家,希望对大家的工作和学习有帮助。
一、最强终端:Upterm
本来想推荐 fish 或者 zsh,但其实这两个我也主要是贪图自动补全这个特性。最近在用的这个 Upterm 其实很简单好用,它是一个全平台的终端,可以说是终端里的 IDE,有着强大的自动补全功能。之前的名字叫 BlackWindow,有人跟他说这个名字不利于社区推广,改名叫 Upterm 之后现在已经17000+ Star了。
二、交互式解释器:Ptpython
一个交互式的 Python 解释器。支持语法高亮、提示甚至是 vim 和 emacs 的键入模式。其实我们在课程里提供的在线终端也内置了 ptpython。
三、包管理必备:Anaconda
强烈推荐Anaconda ,它能帮你安装好许多麻烦的东西,包括: Python 环境、pip 包管理工具、常用的库、配置好环境路径等等。这些事情小白自己一个个去做的话,容易遇到各种问题,带来挫败感。如果你想用Python搞数据方面的事情,就安装它就好了,它甚至开发了一套JIT的解释器Numba。所以 Anaconda有了JIT之后,对线上科学计算效率要求比较高的东西也可以搞了。
四、编辑器:Sublime3
小白的话当然还是推荐从PyCharm开始上手,但有时候写一些轻量的小脚本,就会想用轻量级一点的工具。Sublime3很多地方都有了极大的提升,并且用起来比原来还要简单。配合安装Anaconda或CodeIntel插件,可以让 Sublime拥有近乎IDE的体验。
五、前端在线编辑器:CodeSandbox
虽然这个不算是真正意义上的Python开发工具,但如果后端工程师想写前端的话,这个在线编辑器太方便了,简直是节省了后端工程师的生命啊!不用安装npm的几千个包了,它已经在云端完成了,采让你直接就可以上手写代码、看效果。对于 React、Vue 这些主流前端框架都支持。算是一个推荐补充吧。

❸ python 用什么来开发工具

(一)github
Git是一个分布式的版本控制系统,最初由 Torvalds编写,用作Linux内核代码的管理。在推出后,Git在其它项目中也取得了很大成功,尤其是在Ruby社区中。目前,包括Rubinius、Merb和Bitcoin在内的很多知名项目都使用了Git。Git同样可以被诸如Capistrano和Vlad the Deployer这样的部署工具所使用。
(二)Vim
Vim 是高级文本编辑器,旨在提供实际的 Unix 编辑器‘Vi’功能,支持更多更完善的特性集。Vim 不需要花费太多的学习时间,一旦你需要一个无缝的编程体验,那么就会把 Vim 集成到你的工作流中。
(三)Eclipse with PyDev
Eclipse 是非常流行的 IDE,而且已经有了很久的历史。Eclipse with Pydev 允许开发者创建有用和交互式的 Web 应用。PyDev 是 Eclipse 开发 Python 的 IDE,支持 Python,Jython和 IronPython 的开发。
(四)Sublime Text
Sublime Text 是开发者中最流行的编辑器之一,多功能,支持多种语言,而且在开发者社区非常受欢迎。Sublime 有自己的包管理器,开发者可以使用TA来安装组件,插件和额外的样式,所有这些都能提升你的编码体验。

❹ 如何用python做一个设备运维软件

Python开发的jumpserver跳板机

使用python语言编写的调度和监控工作流的平台内部用来创建、监控和调整数据管道。任何工作流都可以在这个使用Python来编写的平台上运行。

企业主要用于解决:通俗点说就是规范运维的操作,加入审批,一步一步操作的概念。

是一种允许工作流开发人员轻松创建、维护和周期性地调度运行工作流(即有向无环图或成为DAGs)的工具。这些工作流包括了如数据存储、增长分析、Email发送、A/B测试等等这些跨越多部门的用例。

这个平台拥有和 Hive、Presto、MySQL、HDFS、Postgres和S3交互的能力,并且提供了钩子使得系统拥有很好地扩展性。除了一个命令行界面,该工具还提供了一个基于Web的用户界面让您可以可视化管道的依赖关系、监控进度、触发任务等。

来个小总结

❺ 如何管理python项目

Virtual Environments
首先Python似乎没有类似Maven/Ant这样的项目管理工具。那么当一台机器上有多个python项目,且这些python项目各自有不同的依赖,不想互相干扰时怎么办呢?
官方做法是使用Virtual Environments将每个项目互相隔离开。一般情况下,我们使用python解释器运行python脚本或mole:
>python myScript.py
运行的目录就是安装的python解释器,即python.exe所在的目录。而Virtual Environments就是给每个项目都生成一个项目独有的目录,这个目录里包含python解释器,python标准类库和其他各式各样的必要文件。这样每个项目就可以使用不同的解释器和类库,且互不干扰。
创建过程也很简单。首先找到pyvenv.py所在的目录,这个文件通常在安装目录的自目录\Tools\scripts下。这是一个生成Virtual Environments的工具。然后运行:
>pyvenv tutorial-env
运行后就会生成一个名为“tutorial-env”的目录。找到这个目录,可以发现正如官网所说,这个目录包含运行python项目所必须的一切文件。使用在各自Virtual Environments目录里包含的解释器来运行特定的python项目就可以了。同时,对于那些每个项目使用的特定的依赖(packages或mole),则加入到各自Virtual Environments目录的类库子目录中就可以了。这里需要注意的是。创建完Virtual Environments后,还需要激活。做法很简单,在上例tutorial-env目录下执行下的命令即可:
>tutorial-env/Scripts/activate
PIP
PIP是官方提供的安装python第三方类库(packages/mole)的工具。它可以去PPI(python packages index)查找或下载第三方类库。网址是:https://pypi.python.org/pypi
找到上例Virtual Environments目录下的pip.exe并运行:
>pip install lib_name
即可安装,其他功能请自行查看手册。如果是在python的安装目录下运行pip,则类库可以被非Virtual Environments的所有项目使用。PIP安装的其实是package。
Requirements.txt
在Virtual Environments目录下运行:
>pip freeze > requirements.txt
可以生产一个当前项目所有依赖类库及其版本的list文件,文件名就是requirements.txt(当然也可以用别的名字)。文件内容大致如下:
novas==3.1.1.3
numpy==1.9.2
requests==2.7.0
使用requirements.txt的好处就是:
The requirements.txt can then be committed to version control and shipped as part of an application. Users can then install all the necessary packages with “install -r“:
>pip install -r requirements.txt
这样就可以方便的管理项目依赖了。如果不使用requirements.txt,直接使用version control存储Virtual Environments目录,其他程序员直接下载该目录就可以开始项目开发的做法也可以。

❻ python初学者工具用什么工具好呢

对于java程序员,去学习python,pydev+eclipse应该是不错的选择。但对于python程序员选择会很多,初学者专,安装activepython,自带的IDLE,非属常不错,它是纯粹的python用TK写的,可以完成所有的单文件任务;熟练之后可以选择更专业的IDE,比如pycharm,专业的django开发IDE。对于我个人,认识python已经两年,更喜欢sublime text,一款非常有质感,而且功能非常有吸引力(比如它的多行修改功能,插件功能)的IDE,它可以为多种语言服务,并且对于python的以空格为区分语句的风格,sublime,非常不错!

❼ 新手开发 python 运维工具碰到了难题望大神赐教。

自学了一段时间python,感觉可能是我学习的姿势不太对。总是感觉python相比于shell和perl更偏向于web开发。而对linux的运维管理偏弱。

抛开fabric等这类用python开发的运维工具不谈。自己在日常运维中运用python能做些什么?比shell脚本便捷或效率高的地方又体现在哪里?
现在只用python写过部分日志分析脚本和从页面中提取uid生成链接然后测试播放等动作的简单脚本。
其他的就不知道做些什么好了。
想请v2上的前辈多给些指点,如果能有些具体实例就更好不过了。

多谢大家





❽ 学python,可以用哪些开发软件,用什么开发软件最好

首推的Pycharm。
首先,PyCharm用于一般IDE具备的功能,比如, 调试、语法高亮、Project管理、代码跳转、智能提示、自动完成、单元测试、版本控制
另外,PyCharm还提供了一些很好的功能用于Django开发,同时支持Google App Engine,更酷的是,PyCharm支持IronPython。
PyCharm是一种Python IDE,带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试、语法高亮、Project管理、代码跳转、智能提示、自动完成、单元测试、版本控制。此外,该IDE提供了一些高级功能,以用于支持Django框架下的专业Web开发。
其次是sublime text,Sublime Text 支持多种编程语言的语法高亮、拥有优秀的代码自动完成功能,还拥有代码片段(Snippet)的功能,可以将常用的代码片段保存起来,在需要时随时调用。支持 VIM 模式,可以使用Vim模式下的多数命令。支持宏,简单地说就是把操作录制下来或者自己编写命令,然后播放刚才录制的操作或者命令。
Sublime Text 还具有良好的扩展能力和完全开放的用户自定义配置与神奇实用的编辑状态恢复功能。支持强大的多行选择和多行编辑。强大的快捷命令"可以实时搜索到相应的命令、选项、snippet 和 syntex, 按下回车就可以直接执行,减少了查找的麻烦。即时的文件切换。随心所欲的跳转到任意文件的任意位置。多重选择功能允许在页面中同时存在多个光标。
还有Jupyter, Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。
Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等 。数据挖掘领域中最热门的比赛 Kaggle 里的资料都是Jupyter 格式 。
最后就是最基本的nopad++,最开始的时候是实用这款作为开发工具进行基础练习。