python中的sklearn中决策树使用的是哪一种算法

sklearn中决策树分为DecisionTreeClassifier和DecisionTreeRegressor,所以用的算法是CART算法,也就是分类与回归树算法(classification and regression tree,CART),划分标准默认使用的也是Gini,ID3和C4.5用的是信息熵,为何要设置成ID3或者C4.5呢

Ⅱ python sklearn决策树的图怎么画

#coding=utf-8

from sklearn.datasets import load_iris
from sklearn import tree

iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)

from sklearn.externals.six import StringIO
import pydot

dot_data = StringIO()
tree.export_graphviz(clf, out_file=dot_data)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph[0].write_dot('iris_simple.dot')
graph[0].write_png('iris_simple.png')

Ⅲ 决策树算法如何将连续值转化为离散值处理,我要Python实现的代码,希望完整一点

切断就行了。。。比如某个特征的值,预期会在1-100之间。。。那么你可以人为的切片,1-10的,就算1。。。

Ⅳ python 怎么优化决策树的准确度

  1. 增加训练的数据量

  2. 减少数据的特征数

  3. 降低树的高度

  4. 调整剪枝策略

Ⅳ python决策树程序fit_transform报错求解

在第28行和29行之间插入这个试试:

print(help(DVT.fit_transform))

Ⅵ python sklearn 如何用测试集数据画出决策树(非开发样本)

#coding=utf-8

from sklearn.datasets import load_iris
from sklearn import tree

iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)

from sklearn.externals.six import StringIO
import pydot

dot_data = StringIO()
tree.export_graphviz(clf, out_file=dot_data)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph[0].write_dot('iris_simple.dot')
graph[0].write_png('iris_simple.png')

Ⅶ 如何将python生成的决策树画出来

示例
# http://scikit-learn.org/stable/moles/tree.html
>>> from IPython.display import Image
>>> dot_data = tree.export_graphviz(clf, out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
special_characters=True)
>>> graph = pydotplus.graph_from_dot_data(dot_data)
>>> Image(graph.create_png())

Ⅷ python 决策树可以调什么参数

调用这个包:
sklearn.treesklearn(scikit-learn)可以去下载,解压后放入C:Python27Libsite-packages直接使用。需要用同样的方法额外内下载numpy和scipy包,不然会报错。


例子:容

fromsklearn.datasetsimportload_iris
fromsklearn.model_selectionimportcross_val_score
fromsklearn.
clf=DecisionTreeClassifier(random_state=0)
iris=load_iris()
cross_val_score(clf,iris.data,iris.target,cv=10)

Ⅸ 如何将python生成的决策树利用graphviz画出来

决策树是用样本的属性作为结点,用属性的取值作为分支的树结构。
决策树的根结点是所有样本中信息量最大的属性。树的中间结点是该结点为根的子树所包含的样本子集中信息量最大的属性。决策树的叶结点是样本的类别值。决策树是一种知识表示形式,它是对所有样本数据的高度概括决策树能准确地识别所有样本的类别,也能有效地识别新样本的类别。

决策树算法ID3的基本思想:
首先找出最有判别力的属性,把样例分成多个子集,每个子集又选择最有判别力的属性进行划分,一直进行到所有子集仅包含同一类型的数据为止。最后得到一棵决策树。
J.R.Quinlan的工作主要是引进了信息论中的信息增益,他将其称为信息增益(information gain),作为属性判别能力的度量,设计了构造决策树的递归算法。
举例子比较容易理解:
对于气候分类问题,属性为:
天气(A1) 取值为: 晴,多云,雨
气温(A2) 取值为: 冷 ,适中,热
湿度(A3) 取值为: 高 ,正常
风 (A4) 取值为: 有风, 无风
每个样例属于不同的类别,此例仅有两个类别,分别为P,N。P类和N类的样例分别称为正例和反例。将一些已知的正例和反例放在一起便得到训练集。