1. 关于神经网络 需要学习python的哪些知识

多读文档 应该是库 库也是python基础编写的 多读多看

2. python 神经网络库有哪些

学习人工智能时,我给自己定了一个目标--用写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!下面贴出那九行代码

在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。
首先,神经网络是什么?人脑由几千亿由突触相互连接的细胞(神经元)组成。突触传入足够的兴奋就会引起神经元的兴奋。这个过程被称为“思考”。

我们可以在计算机上写一个神经网络来模拟这个过程。不需要在生物分子水平模拟人脑,只需模拟更高层级的规则。我们使用矩阵(二维数据表格)这一数学工具,并且为了简单明了,只模拟一个有3个输入和一个输出的神经元。

我们将训练神经元解决下面的问题。前四个例子被称作训练集。你发现规律了吗?‘?’是0还是1?

你可能发现了,输出总是等于输入中最左列的值。所以‘?’应该是1。
训练过程
但是如何使我们的神经元回答正确呢?赋予每个输入一个权重,可以是一个正的或负的数字。拥有较大正(或负)权重的输入将决定神经元的输出。首先设置每个权重的初始值为一个随机数字,然后开始训练过程:
取一个训练样本的输入,使用权重调整它们,通过一个特殊的公式计算神经元的输出。
计算误差,即神经元的输出与训练样本中的期待输出之间的差值。
根据误差略微地调整权重。
重复这个过程1万次。

最终权重将会变为符合训练集的一个最优解。如果使用神经元考虑这种规律的一个新情形,它将会给出一个很棒的预测。
这个过程就是back propagation。

计算神经元输出的公式
你可能会想,计算神经元输出的公式是什么?首先,计算神经元输入的加权和,即

接着使之规范化,结果在0,1之间。为此使用一个数学函数--Sigmoid函数:

Sigmoid函数的图形是一条“S”状的曲线。

把第一个方程代入第二个,计算神经元输出的最终公式为:

你可能注意到了,为了简单,我们没有引入最低兴奋阈值。
调整权重的公式
我们在训练时不断调整权重。但是怎么调整呢?可以使用“Error Weighted Derivative”公式:

为什么使用这个公式?首先,我们想使调整和误差的大小成比例。其次,乘以输入(0或1),如果输入是0,权重就不会调整。最后,乘以Sigmoid曲线的斜率(图4)。为了理解最后一条,考虑这些:
我们使用Sigmoid曲线计算神经元的输出
如果输出是一个大的正(或负)数,这意味着神经元采用这种(或另一种)方式
从图四可以看出,在较大数值处,Sigmoid曲线斜率小
如果神经元认为当前权重是正确的,就不会对它进行很大调整。乘以Sigmoid曲线斜率便可以实现这一点
Sigmoid曲线的斜率可以通过求导得到:

把第二个等式代入第一个等式里,得到调整权重的最终公式:

当然有其他公式,它们可以使神经元学习得更快,但是这个公式的优点是非常简单。
构造Python代码
虽然我们没有使用神经网络库,但是将导入Python数学库numpy里的4个方法。分别是:
exp--自然指数
array--创建矩阵
dot--进行矩阵乘法
random--产生随机数
比如, 我们可以使用array()方法表示前面展示的训练集:

“.T”方法用于矩阵转置(行变列)。所以,计算机这样存储数字:

我觉得我们可以开始构建更优美的源代码了。给出这个源代码后,我会做一个总结。
我对每一行源代码都添加了注释来解释所有内容。注意在每次迭代时,我们同时处理所有训练集数据。所以变量都是矩阵(二维数据表格)。下面是一个用Python写地完整的示例代码。

结语
试着在命令行运行神经网络:

你应该看到这样的结果:

我们做到了!我们用Python构建了一个简单的神经网络!
首先神经网络对自己赋予随机权重,然后使用训练集训练自己。接着,它考虑一种新的情形[1, 0, 0]并且预测了0.99993704。正确答案是1。非常接近!
传统计算机程序通常不会学习。而神经网络却能自己学习,适应并对新情形做出反应,这是多么神奇,就像人类一样。

3. 用python编写的神经网络结果怎么可视化

学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!下面贴出那九行代码:

在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。

4. 神经网络,python报错:AttributeError: 'DataFrame' object has no attribute 'ravel'

y_train.values.ravel()
这样试试,因为你的y不是一维向量。
我建议你先看看数据

5. 神经网络研究与应用这块用python好还是matlab

Python的优势:

Python相对于Matlab最大的优势:免费。

Python次大的优势:开源。你可以大量更改科学计算的算法细节。

可移植性,Matlab必然不如Python。但你主要做Research,这方面需求应当不高。
第三方生态,Matlab不如Python。比如3D的绘图工具包,比如GUI,比如更方便的并行,使用GPU,Functional等等。长期来看,Python的科学计算生态会比Matlab好。
语言更加优美。另外如果有一定的OOP需求,构建较大一点的科学计算系统,直接用Python比用Matlab混合的方案肯定要简洁不少。
Matlab的优势:

Community. 目前学校实验室很多还用Matlab,很多学者也可能都用Matlab。交流起来或许更加方便。
Matlab本来号称更快,但实际上由于Python越来越完善的生态,这个优势已经逐渐丧失了。
总结来说就是python开源免费,有丰富的第三方库,比较适合实际工程,matlab是商业软件
如果买了的话做学术研究不错, 如果混合编程比较麻烦。

6. python 有哪些神经网络的包

1. Scikit-learn Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随机森林,Gradient Boosting,聚类算法和DBSCAN。

7. python简单神经网络的实现 求问这儿是怎么实现syn0均值为0的,以及我在Python3中运行发现l1的shape也不对

np.random.random 返回[0,1)区间的随机数,2*np.random.random - 1 返回[-1,1)的随机数,具体可以看网页链接

看这个神经网络结构应该就输入输出两层,l1的shape为np.dot(l0,syn0),[4*3],[3*1]的矩阵相乘得到[4*1]的矩阵,y = np.array([[0,1,1,0]]).T,y也是[4*1]的矩阵

8. 怎样用python构建一个卷积神经网络模型

上周末利用python简单实现了一个卷积神经网络,只包含一个卷积层和一个maxpooling层,pooling层后面的多层神经网络采用了softmax形式的输出。实验输入仍然采用MNIST图像使用10个feature map时,卷积和pooling的结果分别如下所示。


部分源码如下:

[python]view plain

  • #coding=utf-8

  • '''''

  • Createdon2014年11月30日

  • @author:Wangliaofan

  • '''

  • importnumpy

  • importstruct

  • importmatplotlib.pyplotasplt

  • importmath

  • importrandom

  • import

  • #test

  • defsigmoid(inX):

  • if1.0+numpy.exp(-inX)==0.0:

  • return999999999.999999999

  • return1.0/(1.0+numpy.exp(-inX))

  • defdifsigmoid(inX):

  • returnsigmoid(inX)*(1.0-sigmoid(inX))

  • deftangenth(inX):

  • return(1.0*math.exp(inX)-1.0*math.exp(-inX))/(1.0*math.exp(inX)+1.0*math.exp(-inX))

  • defcnn_conv(in_image,filter_map,B,type_func='sigmoid'):

  • #in_image[num,featuremap,row,col]=>in_image[Irow,Icol]

  • #featuresmap[kfilter,row,col]

  • #type_func['sigmoid','tangenth']

  • #out_feature[kfilter,Irow-row+1,Icol-col+1]

  • shape_image=numpy.shape(in_image)#[row,col]

  • #print"shape_image",shape_image

  • shape_filter=numpy.shape(filter_map)#[kfilter,row,col]

  • ifshape_filter[1]>shape_image[0]orshape_filter[2]>shape_image[1]:

  • raiseException

  • shape_out=(shape_filter[0],shape_image[0]-shape_filter[1]+1,shape_image[1]-shape_filter[2]+1)

  • out_feature=numpy.zeros(shape_out)

  • k,m,n=numpy.shape(out_feature)

  • fork_idxinrange(0,k):

  • #rotate180tocalculateconv

  • c_filter=numpy.rot90(filter_map[k_idx,:,:],2)

  • forr_idxinrange(0,m):

  • forc_idxinrange(0,n):

  • #conv_temp=numpy.zeros((shape_filter[1],shape_filter[2]))

  • conv_temp=numpy.dot(in_image[r_idx:r_idx+shape_filter[1],c_idx:c_idx+shape_filter[2]],c_filter)

  • sum_temp=numpy.sum(conv_temp)

  • iftype_func=='sigmoid':

  • out_feature[k_idx,r_idx,c_idx]=sigmoid(sum_temp+B[k_idx])

  • eliftype_func=='tangenth':

  • out_feature[k_idx,r_idx,c_idx]=tangenth(sum_temp+B[k_idx])

  • else:

  • raiseException

  • returnout_feature

  • defcnn_maxpooling(out_feature,pooling_size=2,type_pooling="max"):

  • k,row,col=numpy.shape(out_feature)

  • max_index_Matirx=numpy.zeros((k,row,col))

  • out_row=int(numpy.floor(row/pooling_size))

  • out_col=int(numpy.floor(col/pooling_size))

  • out_pooling=numpy.zeros((k,out_row,out_col))

  • fork_idxinrange(0,k):

  • forr_idxinrange(0,out_row):

  • forc_idxinrange(0,out_col):

  • temp_matrix=out_feature[k_idx,pooling_size*r_idx:pooling_size*r_idx+pooling_size,pooling_size*c_idx:pooling_size*c_idx+pooling_size]

  • out_pooling[k_idx,r_idx,c_idx]=numpy.amax(temp_matrix)

  • max_index=numpy.argmax(temp_matrix)

  • #printmax_index

  • #printmax_index/pooling_size,max_index%pooling_size

  • max_index_Matirx[k_idx,pooling_size*r_idx+max_index/pooling_size,pooling_size*c_idx+max_index%pooling_size]=1

  • returnout_pooling,max_index_Matirx

  • defpoolwithfunc(in_pooling,W,B,type_func='sigmoid'):

  • k,row,col=numpy.shape(in_pooling)

  • out_pooling=numpy.zeros((k,row,col))

  • fork_idxinrange(0,k):

  • forr_idxinrange(0,row):

  • forc_idxinrange(0,col):

  • out_pooling[k_idx,r_idx,c_idx]=sigmoid(W[k_idx]*in_pooling[k_idx,r_idx,c_idx]+B[k_idx])

  • returnout_pooling

  • #out_featureistheoutputofconv

  • defbackErrorfromPoolToConv(theta,max_index_Matirx,out_feature,pooling_size=2):

  • k1,row,col=numpy.shape(out_feature)

  • error_conv=numpy.zeros((k1,row,col))

  • k2,theta_row,theta_col=numpy.shape(theta)

  • ifk1!=k2:

  • raiseException

  • foridx_kinrange(0,k1):

  • foridx_rowinrange(0,row):

  • foridx_colinrange(0,col):

  • error_conv[idx_k,idx_row,idx_col]=

  • max_index_Matirx[idx_k,idx_row,idx_col]*

  • float(theta[idx_k,idx_row/pooling_size,idx_col/pooling_size])*

  • difsigmoid(out_feature[idx_k,idx_row,idx_col])

  • returnerror_conv

  • defbackErrorfromConvToInput(theta,inputImage):

  • k1,row,col=numpy.shape(theta)

  • #print"theta",k1,row,col

  • i_row,i_col=numpy.shape(inputImage)

  • ifrow>i_roworcol>i_col:

  • raiseException

  • filter_row=i_row-row+1

  • filter_col=i_col-col+1

  • detaW=numpy.zeros((k1,filter_row,filter_col))

  • #thesamewithconvvalidinmatlab

  • fork_idxinrange(0,k1):

  • foridx_rowinrange(0,filter_row):

  • foridx_colinrange(0,filter_col):

  • subInputMatrix=inputImage[idx_row:idx_row+row,idx_col:idx_col+col]

  • #print"subInputMatrix",numpy.shape(subInputMatrix)

  • #rotatetheta180

  • #printnumpy.shape(theta)

  • theta_rotate=numpy.rot90(theta[k_idx,:,:],2)

  • #print"theta_rotate",theta_rotate

  • dotMatrix=numpy.dot(subInputMatrix,theta_rotate)

  • detaW[k_idx,idx_row,idx_col]=numpy.sum(dotMatrix)

  • detaB=numpy.zeros((k1,1))

  • fork_idxinrange(0,k1):

  • detaB[k_idx]=numpy.sum(theta[k_idx,:,:])

  • returndetaW,detaB

  • defloadMNISTimage(absFilePathandName,datanum=60000):

  • images=open(absFilePathandName,'rb')

  • buf=images.read()

  • index=0

  • magic,numImages,numRows,numColumns=struct.unpack_from('>IIII',buf,index)

  • printmagic,numImages,numRows,numColumns

  • index+=struct.calcsize('>IIII')

  • ifmagic!=2051:

  • raiseException

  • datasize=int(784*datanum)

  • datablock=">"+str(datasize)+"B"

  • #nextmatrix=struct.unpack_from('>47040000B',buf,index)

  • nextmatrix=struct.unpack_from(datablock,buf,index)

  • nextmatrix=numpy.array(nextmatrix)/255.0

  • #nextmatrix=nextmatrix.reshape(numImages,numRows,numColumns)

  • #nextmatrix=nextmatrix.reshape(datanum,1,numRows*numColumns)

  • nextmatrix=nextmatrix.reshape(datanum,1,numRows,numColumns)

  • returnnextmatrix,numImages

  • defloadMNISTlabels(absFilePathandName,datanum=60000):

  • labels=open(absFilePathandName,'rb')

  • buf=labels.read()

  • index=0

  • magic,numLabels=struct.unpack_from('>II',buf,index)

  • printmagic,numLabels

  • index+=struct.calcsize('>II')

  • ifmagic!=2049:

  • raiseException

  • datablock=">"+str(datanum)+"B"

  • #nextmatrix=struct.unpack_from('>60000B',buf,index)

  • nextmatrix=struct.unpack_from(datablock,buf,index)

  • nextmatrix=numpy.array(nextmatrix)

  • returnnextmatrix,numLabels

  • defsimpleCNN(numofFilter,filter_size,pooling_size=2,maxIter=1000,imageNum=500):

  • decayRate=0.01

  • MNISTimage,num1=loadMNISTimage("F:\train-images-idx3-ubyte",imageNum)

  • printnum1

  • row,col=numpy.shape(MNISTimage[0,0,:,:])

  • out_Di=numofFilter*((row-filter_size+1)/pooling_size)*((col-filter_size+1)/pooling_size)

  • MLP=BMNN2.MuiltilayerANN(1,[128],out_Di,10,maxIter)

  • MLP.setTrainDataNum(imageNum)

  • MLP.loadtrainlabel("F:\train-labels-idx1-ubyte")

  • MLP.initialweights()

  • #MLP.printWeightMatrix()

  • rng=numpy.random.RandomState(23455)

  • W_shp=(numofFilter,filter_size,filter_size)

  • W_bound=numpy.sqrt(numofFilter*filter_size*filter_size)

  • W_k=rng.uniform(low=-1.0/W_bound,high=1.0/W_bound,size=W_shp)

  • B_shp=(numofFilter,)

  • B=numpy.asarray(rng.uniform(low=-.5,high=.5,size=B_shp))

  • cIter=0

  • whilecIter<maxIter:

  • cIter+=1

  • ImageNum=random.randint(0,imageNum-1)

  • conv_out_map=cnn_conv(MNISTimage[ImageNum,0,:,:],W_k,B,"sigmoid")

  • out_pooling,max_index_Matrix=cnn_maxpooling(conv_out_map,2,"max")

  • pool_shape=numpy.shape(out_pooling)

  • MLP_input=out_pooling.reshape(1,1,out_Di)

  • #printnumpy.shape(MLP_input)

  • DetaW,DetaB,temperror=MLP.backwardPropogation(MLP_input,ImageNum)

  • ifcIter%50==0:

  • printcIter,"Temperror:",temperror

  • #printnumpy.shape(MLP.Theta[MLP.Nl-2])

  • #printnumpy.shape(MLP.Ztemp[0])

  • #printnumpy.shape(MLP.weightMatrix[0])

  • theta_pool=MLP.Theta[MLP.Nl-2]*MLP.weightMatrix[0].transpose()

  • #printnumpy.shape(theta_pool)

  • #print"theta_pool",theta_pool

  • temp=numpy.zeros((1,1,out_Di))

  • temp[0,:,:]=theta_pool

  • back_theta_pool=temp.reshape(pool_shape)

  • #print"back_theta_pool",numpy.shape(back_theta_pool)

  • #print"back_theta_pool",back_theta_pool

  • error_conv=backErrorfromPoolToConv(back_theta_pool,max_index_Matrix,conv_out_map,2)

  • #print"error_conv",numpy.shape(error_conv)

  • #printerror_conv

  • conv_DetaW,conv_DetaB=backErrorfromConvToInput(error_conv,MNISTimage[ImageNum,0,:,:])

  • #print"W_k",W_k

  • #print"conv_DetaW",conv_DetaW

9. 怎么用python 中brian包进行神经网络简化模型

著作权归作者所有。
商业转载请联系作者获得授权,非商业转载请注明出处。
作者:王赟 Maigo
链接:http://www.hu.com/question/28606380/answer/41442872
来源:知乎

就我所知,Python有一个Theano库可以利用GPU进行矩阵运算和符号求导,在此基础上有PDNN等专门训练神经网络的工具包(PDNN是我实验室的同学开发的~)。

Matlab那边我不了解,随便搜了一下发现了一个Deep Neural Networks for Matlab。因为没有用过,所以不好评价。

10. 怎样用python构建一个卷积神经网络

用keras框架较为方便

首先安装anaconda,然后通过pip安装keras


以下转自wphh的博客。

#coding:utf-8

'''
GPUruncommand:
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32pythoncnn.py
CPUruncommand:
pythoncnn.py

2016.06.06更新:
这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程。
现在keras的API也发生了一些的变化,建议及推荐直接上keras.io看更加详细的教程。

'''
#导入各种用到的模块组件
from__future__importabsolute_import
from__future__importprint_function
fromkeras.preprocessing.imageimportImageDataGenerator
fromkeras.modelsimportSequential
fromkeras.layers.coreimportDense,Dropout,Activation,Flatten
fromkeras.layers.advanced_activationsimportPReLU
fromkeras.layers.,MaxPooling2D
fromkeras.optimizersimportSGD,Adadelta,Adagrad
fromkeras.utilsimportnp_utils,generic_utils
fromsix.movesimportrange
fromdataimportload_data
importrandom
importnumpyasnp

np.random.seed(1024)#forreprocibility
#加载数据
data,label=load_data()
#打乱数据
index=[iforiinrange(len(data))]
random.shuffle(index)
data=data[index]
label=label[index]
print(data.shape[0],'samples')

#label为0~9共10个类别,keras要求格式为binaryclassmatrices,转化一下,直接调用keras提供的这个函数
label=np_utils.to_categorical(label,10)

###############
#开始建立CNN模型
###############

#生成一个model
model=Sequential()

#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:http://deeplearning.net/software/theano/library/tensor/nnet/conv.html#theano.tensor.nnet.conv.conv2d
#激活函数用tanh
#你还可以在model.add(Activation('tanh'))后加上dropout的技巧:model.add(Dropout(0.5))
model.add(Convolution2D(4,5,5,border_mode='valid',input_shape=(1,28,28)))
model.add(Activation('tanh'))


#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(8,3,3,border_mode='valid'))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2,2)))

#第三个卷积层,16个卷积核,每个卷积核大小3*3
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(16,3,3,border_mode='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))

#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(128,init='normal'))
model.add(Activation('tanh'))


#Softmax分类,输出是10类别
model.add(Dense(10,init='normal'))
model.add(Activation('softmax'))


#############
#开始训练模型
##############
#使用SGD+momentum
#model.compile里的参数loss就是损失函数(目标函数)
sgd=SGD(lr=0.05,decay=1e-6,momentum=0.9,nesterov=True)
model.compile(loss='categorical_crossentropy',optimizer=sgd,metrics=["accuracy"])


#调用fit方法,就是一个训练过程.训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
model.fit(data,label,batch_size=100,nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)


"""
#使用dataaugmentation的方法
#一些参数和调用的方法,请看文档
datagen=ImageDataGenerator(
featurewise_center=True,#setinputmeanto0overthedataset
samplewise_center=False,#seteachsamplemeanto0
featurewise_std_normalization=True,#divideinputsbystdofthedataset
samplewise_std_normalization=False,#divideeachinputbyitsstd
zca_whitening=False,#applyZCAwhitening
rotation_range=20,#(degrees,0to180)
width_shift_range=0.2,#(fractionoftotalwidth)
height_shift_range=0.2,#randomlyshiftimagesvertically(fractionoftotalheight)
horizontal_flip=True,#randomlyflipimages
vertical_flip=False)#randomlyflipimages

#
#(std,mean,)
datagen.fit(data)

foreinrange(nb_epoch):
print('-'*40)
print('Epoch',e)
print('-'*40)
print("Training...")
#
progbar=generic_utils.Progbar(data.shape[0])
forX_batch,Y_batchindatagen.flow(data,label):
loss,accuracy=model.train(X_batch,Y_batch,accuracy=True)
progbar.add(X_batch.shape[0],values=[("trainloss",loss),("accuracy:",accuracy)])

"""