⑴ 为什么python多线程这么慢

差不多是这样子。多线程目前仅用于网络多线程采集, 以及性能测试。

其它的语言也有类似的情况,线程本身的特点导致线程的适用范围是受限的。只有CPU过剩,而其它的任务很慢,此时用线程才是有益的,可以很好平衡等待时间,提高并发性能。

线程的问题主要是线程的安全稳定性。线程无法强制中止,同时线程与主进程共享内存,可能会影响主进程的内存管理。

在python里线程出问题,可能会导致主进程崩溃。 虽然python里的线程是操作系统的真实线程。

那么怎么解决呢?通过我们用进程方式。子进程崩溃后,会完全的释放所有的内存和错误状态。所以进程更安全。 另外通过进程,python可以很好的绕过GIL,这个全局锁问题。

但是进程也是有局限的。不要建立超过CPU总核数的进程,否则效率也不高。

简单的总结一下。
当我们想实现多任务处理时,首先要想到使用multiprocessing, 但是如果觉着进程太笨重,那么就要考虑使用线程。 如果多任务处理中需要处理的太多了,可以考虑多进程,每个进程再采用多线程。如果还处理不要,就要使用轮询模式,比如使用poll event, twisted等方式。如果是GUI方式,则要通过事件机制,或者是消息机制处理,GUI使用单线程。

所以在python里线程不要盲目用, 也不要滥用。 但是线程不安全是事实。如果仅仅是做几个后台任务,则可以考虑使用守护线程做。如果需要做一些危险操作,可能会崩溃的,就用子进程去做。 如果需要高度稳定性,同时并发数又不高的服务。则强烈建议用多进程的multiprocessing模块实现。

在linux或者是unix里,进程的使用代价没有windows高。还是可以接受的。

⑵ python多线程中每个线程如果不加休眠时间就会只泡在一个线程上,这该如何处理谢谢

这是三个线程都在跑啊,只是并发的而已

⑶ 为什么有人说Python的多线程是鸡肋

因为 Python 中臭名昭著的 GIL。

那么 GIL 是什么?为什么会有 GIL?多线程真的是鸡肋吗? GIL 可以去掉吗?带着这些问题,我们一起往下看,同时需要你有一点点耐心。

多线程是不是鸡肋,我们先做个实验,实验非常简单,就是将数字 “1亿” 递减,减到 0 程序就终止,这个任务如果我们使用单线程来执行,完成时间会是多少?使用多线程又会是多少?show me the code

那么把 GIL 去掉可行吗?

还真有人这么干多,但是结果令人失望,在1999年Greg Stein 和Mark Hammond 两位哥们就创建了一个去掉 GIL 的 Python 分支,在所有可变数据结构上把 GIL 替换为更为细粒度的锁。然而,做过了基准测试之后,去掉GIL的 Python 在单线程条件下执行效率将近慢了2倍。

Python之父表示:基于以上的考虑,去掉GIL没有太大的价值而不必花太多精力。

⑷ python循环怎么用多线程去运行

背景:Python脚本:读取文件中每行,放入列表中;循环读取列表中的每个元素,并做处理操作。
核心:多线程处理单个for循环函数调用
模块:threading
第一部分:

:多线程脚本 (该脚本只有两个线程,t1循环次数<t2)#!/usr/bin/env python#-*- coding: utf8 -*- import sysimport timeimport stringimport threadingimport datetimefileinfo = sys.argv[1] # 读取文件内容放入列表host_list = []port_list = [] # 定义函数:读取文件内容放入列表中def CreateList(): f = file(fileinfo,'r') for line in f.readlines(): host_list.append(line.split(' ')[0]) port_list.append(line.split(' ')[1]) return host_list return port_list f.close() # 单线程 循环函数,注释掉了#def CreateInfo(): # for i in range(0,len(host_list)): # 单线程:直接循环列表# time.sleep(1)# TimeMark = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')# print "The Server's HostName is %-15s and Port is %-4d !!! [%s]" % (host_list[i],int(port_list[i]),TimeMark)# # 定义多线程循环调用函数def MainRange(start,stop): #提供列表index起始位置参数 for i in range(start,stop): time.sleep(1) TimeMark = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print "The Server's HostName is %-15s and Port is %-4d !!! [%s]" % (host_list[i],int(port_list[i]),TimeMark) # 执行函数,生成列表CreateList()# 列表分割成:两部分 mid为列表的index中间位置mid = int(len(host_list)/2) # 多线程部分threads = []t1 = threading.Thread(target=MainRange,args=(0,mid))threads.append(t1)t2 = threading.Thread(target=MainRange,args=(mid,len(host_list)))threads.append(t2) for t in threads: t.setDaemon(True) t.start()t.join()print "ok"

以上是脚本内容!!!
----------------------------------------------------------------------
:读取文件的内容
文件内容:
[root@monitor2 logdb]# cat hostinfo.txt
192.168.10.11 1011
192.168.10.12 1012
192.168.10.13 1013
192.168.10.14 1014
192.168.10.15 1015
192.168.10.16 1016
192.168.10.17 1017
192.168.10.18 1018
192.168.10.19 1019
192.168.10.20 1020
192.168.10.21 1021
192.168.10.22 1022
192.168.10.23 1023
192.168.10.24 1024
192.168.10.25 1025

:输出结果:
单线程 : 执行脚本:输出结果:
[root@monitor2 logdb]# ./Threadfor.py hostinfo.txt
The Server's HostName is 192.168.10.10 and Port is 1010 !!! [2017-01-10 14:25:14]
The Server's HostName is 192.168.10.11 and Port is 1011 !!! [2017-01-10 14:25:15]
The Server's HostName is 192.168.10.12 and Port is 1012 !!! [2017-01-10 14:25:16]
.
.
.
The Server's HostName is 192.168.10.25 and Port is 1025 !!! [2017-01-10 14:25:29]

多线程:执行脚本:输出 结果
[root@monitor2 logdb]# ./Threadfor.py hostinfo.txt
The Server's HostName is 192.168.10.11 and Port is 1011 !!! [2017-01-10 14:51:51]
The Server's HostName is 192.168.10.18 and Port is 1018 !!! [2017-01-10 14:51:51]
The Server's HostName is 192.168.10.12 and Port is 1012 !!! [2017-01-10 14:51:52]
The Server's HostName is 192.168.10.19 and Port is 1019 !!! [2017-01-10 14:51:52]
The Server's HostName is 192.168.10.13 and Port is 1013 !!! [2017-01-10 14:51:53]
The Server's HostName is 192.168.10.20 and Port is 1020 !!! [2017-01-10 14:51:53]
The Server's HostName is 192.168.10.14 and Port is 1014 !!! [2017-01-10 14:51:54]
The Server's HostName is 192.168.10.21 and Port is 1021 !!! [2017-01-10 14:51:54]
The Server's HostName is 192.168.10.15 and Port is 1015 !!! [2017-01-10 14:51:55]
The Server's HostName is 192.168.10.22 and Port is 1022 !!! [2017-01-10 14:51:55]
The Server's HostName is 192.168.10.16 and Port is 1016 !!! [2017-01-10 14:51:56]
The Server's HostName is 192.168.10.23 and Port is 1023 !!! [2017-01-10 14:51:56]
The Server's HostName is 192.168.10.17 and Port is 1017 !!! [2017-01-10 14:51:57]
The Server's HostName is 192.168.10.24 and Port is 1024 !!! [2017-01-10 14:51:57]
The Server's HostName is 192.168.10.25 and Port is 1025 !!! [2017-01-10 14:51:58]

⑸ python 线程过多怎么处理

一般来说,多线程模式下,建议主线程只处理线程本身的调度,不去版处理具体业务。通常在创权建线程后,join等待所有线程退出。 就题主的问题,可以创建线程一、二之后,主线程等待线程一退出,之后用sys.exit退出。

⑹ 为什么有人说 Python 的多线程是鸡肋

Python多线程是不是鸡肋,是,GIL那个东西再那里摆着,就算在多核下面Python也是无法并行的,这个好理解嘛,就相当于做了个分时复用。
Python多线程有没有用,有,你去爬图片站的时候,用单进程单线程这种方式,进程很容易阻塞在获取数据socket函数上,多线程可以缓解这种情况。你说解决没有,要是每个请求都阻塞起了,那多线程也没什么用(当然,这种情况没见过哈)。
Python的优势就在于写起来快,用起来方便。你要做计算密集型的,还想并行化的话,还是用C吧。

⑺ python 多线程

python支持多线程效果还不错,很多方面都用到了python 多线程的知识,我前段时间用python 多线程写了个处理生产者和消费者的问题,把代码贴出来给你看下:
#encoding=utf-8
import threading
import random
import time
from Queue import Queue

class Procer(threading.Thread):

def __init__(self, threadname, queue):
threading.Thread.__init__(self, name = threadname)
self.sharedata = queue

def run(self):
for i in range(20):
print self.getName(),'adding',i,'to queue'
self.sharedata.put(i)
time.sleep(random.randrange(10)/10.0)
print self.getName(),'Finished'

# Consumer thread

class Consumer(threading.Thread):

def __init__(self, threadname, queue):
threading.Thread.__init__(self, name = threadname)
self.sharedata = queue

def run(self):

for i in range(20):
print self.getName(),'got a value:',self.sharedata.get()
time.sleep(random.randrange(10)/10.0)
print self.getName(),'Finished'

# Main thread

def main():

queue = Queue()
procer = Procer('Procer', queue)
consumer = Consumer('Consumer', queue)
print 'Starting threads ...'
procer.start()
consumer.start()
procer.join()
consumer.join()
print 'All threads have terminated.'
if __name__ == '__main__':
main()

如果你想要了解更多的python 多线程知识可以点下面的参考资料的地址,希望对有帮助!

⑻ Python如何跑多线程

Python多线程运行:
使用线程可以把占据长时间的程序中的任务放到后台去处理。
用户界内面可以容更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度
程序的运行速度可能加快
在一些等待的任务实现上如用户输入、文件读写和网络收发数据等,线程就比较有用了。在这种情况下我们可以释放一些珍贵的资源如内存占用等等。
线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。
每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。
指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。
线程可以被抢占(中断)。
在其他线程正在运行时,线程可以暂时搁置(也称为睡眠) -- 这就是线程的退让。