python与NodeJS推荐学哪个

这个关键取决你自身的基础条件和兴趣方向。

Python是个比较成熟的跨平内台的通用型脚容本语言,有非常完善庞大的内置模块和第三方扩展模块。
Python几乎什么都能干,但是自身性能较低。IT自动化运维,网络爬虫,数据分析是优势的领域

Node.js采用事件驱动、异步编程,为网络服务而设计
"Node.js 是服务器端的 JavaScript 运行环境,它具有无阻塞(non-blocking)和事件驱动(event-driven)等的特色,Node.js 采用 V8 引擎,同样,Node.js 实现了类似 Apache 和 nginx 的web服务,让你可以通过它来搭建基于 JavaScript 的 Web App。"

⑵ nodejs怎么调用python命令行

调用python脚本(python脚本本身是传参数的)

这里插入一个题外话,下面这段是对python传参数的回简单说明一下:答
复制代码代码如下:

# -*-coding:utf-8 -*-
'''
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[2]
'''
import sys
print u"脚本名:", sys.argv[0]
for i in range(1, len(sys.argv)):#这里参数从1开始
print u"参数", i, sys.argv[i]

⑶ Python和nodeJS哪个更适合做爬虫

我觉得第二个更适合做爬虫

⑷ 写后端 Python,nodejs和php哪个更好一些

Node.js相优于Python的地方:快:这个快有两方面,第一是V8引擎快,第二是异步执行,Node.js功能上是一个基于V8引擎的异步网络和IOLibrary,和Python的Twisted很像,不同的是Node.js的eventloop是很底层的深入在语言中的,可以想象成整个文件在执行的时候就在一个很大的eventloop里;npm:npm可以说是用起来最顺手的packagemanagement了,npm作为Node.js的官方packagemanagement,汇集了整个社区最集中的资源;不像Python经历过easy_install和pip,还有2to3的问题;Windows支持:Node.js有微软的加持,Windows基本被视为一等公民来支持,libuv已经可以很好的做到统一跨平台的API;而Python虽然也对Windows有官方的支持,但是总感觉是二等公民,时不时出些问题。Python优于Node.js的地方:语言:就单纯从语言的角度来说,Python写起来要比Javascript舒服很多;Javascript设计本身有许多缺陷,毕竟当时设计的时候只是作为在浏览器中做一些简单任务的script,所以代码一旦庞大,维护还是有困难(不过Node.js的mole很大的改善了这个问题),不过用Coffeescript可以很大的改善Javascript,几乎可以和Python等同;成熟:成熟包括语言本身已经成熟,还有Framework和ecosystem也很庞大。Node.js的绝大多数framework都很新,有的API一直在变,有的感觉已经不在维护,总之没有一个像Django那种百足之虫感觉的framework。Python的主流ORMSQLalchemy也很成熟。Python和Node.js很难分高下的地方:异步Style:Node.js的异步Style是CPS,也就是层层callback,基于event,和浏览器中的Javascript很像。CPS好处是让熟悉浏览器Javascript的人能很快上手,学习难度也不大。缺点是逻辑一复杂,就变得很难维护,基本上需要通过async.js这种library,或者用promise。Python的异步除了和Node.js很像的Twisted之外,也有基于coroutine的gevent,coroutine让异步代码维护起来更容易,不过学习曲线陡;应用场景:如果是一个CRUD的app,那么想都不想直接是Python,Node.js本身不擅长CRUD的app(绝大多数Node.js都是直接裸在外面的,而不是有一个Nginx在前面,否则websocket就不能用了,不过新版nginx开始支持websocket),代码又不好维护,而Python的WSGI很适合,成熟的stack也有很多。如果更偏向于real-time,比如一个chatroom,那么Node.js实现更容易。这两个应用场景还是有差别的。

⑸ Node.js 与 Python 作为后端服务的编程语言各有什么优劣

一. NodeJS的特点

我们先来看看NodeJS官网上的介绍:

Node.jsis a platform built on Chrome’sJavaScriptruntime for easily building fast, scalable network applications.node.jsuses an event-driven, non-blocking I/O model that makes it lightweight and efficient, perfect for data-intensive real-time applications that run across distributed devices.

其特点为:
1. 它是一个Javascript运行环境

2. 依赖于Chrome V8引擎进行代码解释

3. 事件驱动

4. 非阻塞I/O

5. 轻量、可伸缩,适于实时数据交互应用

6. 单进程,单线程

二. NodeJS带来的对系统瓶颈的解决方案

它的出现确实能为我们解决现实当中系统瓶颈提供了新的思路和方案,下面我们看看它能解决什么问题。

1. 并发连接

举个例子,想象一个场景,我们在银行排队办理业务,我们看看下面两个模型。

(1)系统线程模型:

这种模型的问题显而易见,服务端只有一个线程,并发请求(用户)到达只能处理一个,其余的要先等待,这就是阻塞,正在享受服务的请求阻塞后面的请求了。

(2)多线程、线程池模型:

这个模型已经比上一个有所进步,它调节服务端线程的数量来提高对并发请求的接收和响应,但并发量高的时候,请求仍然需要等待,它有个更严重的问题。到代码层面上来讲,我们看看客户端请求与服务端通讯的过程:

服务端与客户端每建立一个连接,都要为这个连接分配一套配套的资源,主要体现为系统内存资源,以PHP为例,维护一个连接可能需要20M的内存。这就是为什么一般并发量一大,就需要多开服务器。

那么NodeJS是怎么解决这个问题的呢?我们来看另外一个模型,想象一下我们在快餐店点餐吃饭的场景。

(3)异步、事件驱动模型

我们同样是要发起请求,等待服务器端响应;但是与银行例子不同的是,这次我们点完餐后拿到了一个号码,拿到号码,我们往往会在位置上等待,而在我们后面的请求会继续得到处理,同样是拿了一个号码然后到一旁等待,接待员能一直进行处理。

等到饭菜做号了,会喊号码,我们拿到了自己的饭菜,进行后续的处理(吃饭)。这个喊号码的动作在NodeJS中叫做回调(Callback),能在事件(烧菜,I/O)处理完成后继续执行后面的逻辑(吃饭),这体现了NodeJS的显著特点,异步机制、事件驱动整个过程没有阻塞新用户的连接(点餐),也不需要维护已经点餐的用户与厨师的连接。

基于这样的机制,理论上陆续有用户请求连接,NodeJS都可以进行响应,因此NodeJS能支持比Java、PHP程序更高的并发量虽然维护事件队列也需要成本,再由于NodeJS是单线程,事件队列越长,得到响应的时间就越长,并发量上去还是会力不从心。

总结一下NodeJS是怎么解决并发连接这个问题的:更改连接到服务器的方式,每个连接发射(emit)一个在NodeJS引擎进程中运行的事件(Event),放进事件队列当中,而不是为每个连接生成一个新的OS线程(并为其分配一些配套内存)。

2. I/O阻塞

NodeJS解决的另外一个问题是I/O阻塞,看看这样的业务场景:需要从多个数据源拉取数据,然后进行处理。

(1)串行获取数据,这是我们一般的解决方案,以PHP为例

假如获取profile和timeline操作各需要1S,那么串行获取就需要2S。

(2)NodeJS非阻塞I/O,发射/监听事件来控制执行过程

NodeJS遇到I/O事件会创建一个线程去执行,然后主线程会继续往下执行的,因此,拿profile的动作触发一个I/O事件,马上就会执行拿timeline的动作,两个动作并行执行,假如各需要1S,那么总的时间也就是1S。它们的I/O操作执行完成后,发射一个事件,profile和timeline,事件代理接收后继续往下执行后面的逻辑,这就是NodeJS非阻塞I/O的特点。

总结一下:Java、PHP也有办法实现并行请求(子线程),但NodeJS通过回调函数(Callback)和异步机制会做得很自然。

三. NodeJS的优缺点

优点:1. 高并发(最重要的优点)

2. 适合I/O密集型应用

缺点:1. 不适合CPU密集型应用;CPU密集型应用给Node带来的挑战主要是:由于JavaScript单线程的原因,如果有长时间运行的计算(比如大循环),将会导致CPU时间片不能释放,使得后续I/O无法发起;

解决方案:分解大型运算任务为多个小任务,使得运算能够适时释放,不阻塞I/O调用的发起;

2. 只支持单核CPU,不能充分利用CPU

3. 可靠性低,一旦代码某个环节崩溃,整个系统都崩溃

原因:单进程,单线程

解决方案:(1)Nnigx反向代理,负载均衡,开多个进程,绑定多个端口;

(2)开多个进程监听同一个端口,使用cluster模块;

4. 开源组件库质量参差不齐,更新快,向下不兼容

5. Debug不方便,错误没有stack trace

四. 适合NodeJS的场景

1. RESTful API

这是NodeJS最理想的应用场景,可以处理数万条连接,本身没有太多的逻辑,只需要请求API,组织数据进行返回即可。它本质上只是从某个数据库中查找一些值并将它们组成一个响应。由于响应是少量文本,入站请求也是少量的文本,因此流量不高,一台机器甚至也可以处理最繁忙的公司的API需求。

2. 统一Web应用的UI层

目前MVC的架构,在某种意义上来说,Web开发有两个UI层,一个是在浏览器里面我们最终看到的,另一个在server端,负责生成和拼接页面。

不讨论这种架构是好是坏,但是有另外一种实践,面向服务的架构,更好的做前后端的依赖分离。如果所有的关键业务逻辑都封装成REST调用,就意味着在上层只需要考虑如何用这些REST接口构建具体的应用。那些后端程序员们根本不操心具体数据是如何从一个页面传递到另一个页面的,他们也不用管用户数据更新是通过Ajax异步获取的还是通过刷新页面。

3. 大量Ajax请求的应用

例如个性化应用,每个用户看到的页面都不一样,缓存失效,需要在页面加载的时候发起Ajax请求,NodeJS能响应大量的并发请求。总而言之,NodeJS适合运用在高并发、I/O密集、少量业务逻辑的场景。

Python的优缺点

优点

简单————Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样,尽管这个英语的要求非常严格!Python的这种伪代码本质是它最大的优点之一。它使你能够专注于解决问题而不是去搞明白语言本身。

易学————就如同你即将看到的一样,Python极其容易上手。前面已经提到了,Python有极其简单的语法。

免费、开源————Python是FLOSS(自由/开放源码软件)之一。简单地说,你可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。这是为什么Python如此优秀的原因之一——它是由一群希望看到一个更加优秀的Python的人创造并经常改进着的。

高层语言————当你用Python语言编写程序的时候,你无需考虑诸如如何管理你的程序使用的内存一类的底层细节。

可移植性————由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工作在不同平台上)。如果你小心地避免使用依赖于系统的特性,那么你的所有Python程序无需修改就可以在下述任何平台上面运行。这些平台包括Linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、Palm OS、QNX、VMS、Psion、Acom RISC OS、VxWorks、PlayStation、Sharp Zaurus、Windows CE甚至还有PocketPC、Symbian以及Google基于linux开发的Android平台!

解释性————这一点需要一些解释。一个用编译性语言比如C或C++写的程序可以从源文件(即C或C++语言)转换到一个你的计算机使用的语言(二进制代码,即0和1)。这个过程通过编译器和不同的标记、选项完成。当你运行你的程序的时候,连接/转载器软件把你的程序从硬盘复制到内存中并且运行。而Python语言写的程序不需要编译成二进制代码。你可以直接从源代码 运行 程序。在计算机内部,Python解释器把源代码转换成称为字节码的中间形式,然后再把它翻译成计算机使用的机器语言并运行。事实上,由于你不再需要担心如何编译程序,如何确保连接转载正确的库等等,所有这一切使得使用Python更加简单。由于你只需要把你的Python程序拷贝到另外一台计算机上,它就可以工作了,这也使得你的Python程序更加易于移植。

面向对象————Python既支持面向过程的编程也支持面向对象的编程。在“面向过程”的语言中,程序是由过程或仅仅是可重用代码的函数构建起来的。在“面向对象”的语言中,程序是由数据和功能组合而成的对象构建起来的。与其他主要的语言如C++和Java相比,Python以一种非常强大又简单的方式实现面向对象编程。

可扩展性————如果你需要你的一段关键代码运行得更快或者希望某些算法不公开,你可以把你的部分程序用C或C++编写,然后在你的Python程序中使用它们。

可嵌入性————你可以把Python嵌入你的C/C++程序,从而向你的程序用户提供脚本功能。

丰富的库————Python标准库确实很庞大。它可以帮助你处理各种工作,包括正则表达式、文档生成、单元测试、线程、数据库、网页浏览器、CGI、FTP、电子邮件、XML、XML-RPC、HTML、WAV文件、密码系统、GUI(图形用户界面)、Tk和其他与系统有关的操作。记住,只要安装了Python,所有这些功能都是可用的。这被称作Python的“功能齐全”理念。除了标准库以外,还有许多其他高质量的库,如wxPython、Twisted和Python图像库等等。

概括————Python确实是一种十分精彩又强大的语言。它合理地结合了高性能与使得编写程序简单有趣的特色。

规范的代码————Python采用强制缩进的方式使得代码具有极佳的可读性。

缺点

强制缩进

这也许不应该被称为局限,但是它用缩进来区分语句关系的方式还是给很多初学者带来了困惑。即便是很有经验的Python程序员,也可能陷入陷阱当中。最常见的情况是tab和空格的混用会导致错误,而这是用肉眼无法分别的。

单行语句和命令行输出问题

很多时候不能将程序连写成一行,如import sys;for i in sys.path:print i。而perl和awk就无此限制,可以较为方便的在shell下完成简单程序,不需要如Python一样,必须将程序写入一个.py文件。(对很多用户而言这也不算是限制)

NO.1 运行速度,有速度要求的话,用C++改写关键部分吧。

NO.2 国内市场较小(国内以python来做主要开发的,目前只有一些web2.0公司)。但时间推移,目前很多国内软件公司,尤其是游戏公司,也开始规模使用他。

No.3 中文资料匮乏(好的python中文资料屈指可数)。托社区的福,有几本优秀的教材已经被翻译了,但入门级教材多,高级内容还是只能看英语版。

NO.4 构架选择太多(没有像C#这样的官方.net构架,也没有像ruby由于历史较短,构架开发的相对集中。Ruby on Rails 构架开发中小型web程序天下无敌)。不过这也从另一个侧面说明,python比较优秀,吸引的人才多,项目也多。

⑹ 想自学后端,Nodejs 和 Python 哪个更值得一荐

本人死会js 和python 的
Python 更加简单易学 个人推荐 代码的易读性更强 对于初学者 更加容易上手回

nodejs 的话 语法比较答不严谨 很多时候 代码很凌乱 我自己写的代码 有时候 都看着发蒙

⑺ 为什么装 node.js 要先装 python.python 起到了什么作用

Node.js项目中采用了gyp作为项目生成工具。这个是只有需要编译的情况才需要。如果是安装msi或者pkg,都不需要安装python的。

⑻ python和node.js哪个好,哪一个好学!

看你的需求了,如果你要做服务器端脚本,偏向运维,建议python,如果是聊天室之类的开发建议nodejs。

如果解决了您的问题请点赞!
如果未解决请继续追问!

⑼ Python,Node.js 哪个比较适合写爬虫

主要看你定义的“爬虫”干什么用。

1、如果是定向爬取几个页面,做一些简单的页面解析,爬取效率不是核心要求,那么用什么语言差异不大。
当然要是页面结构复杂,正则表达式写得巨复杂,尤其是用过那些支持xpath的类库/爬虫库后,就会发现此种方式虽然入门门槛低,但扩展性、可维护性等都奇差。因此此种情况下还是推荐采用一些现成的爬虫库,诸如xpath、多线程支持还是必须考虑的因素。

2、如果是定向爬取,且主要目标是解析js动态生成的内容
此时候,页面内容是有js/ajax动态生成的,用普通的请求页面->解析的方法就不管用了,需要借助一个类似firefox、chrome浏览器的js引擎来对页面的js代码做动态解析。
此种情况下,推荐考虑casperJS+phantomjs或slimerJS+phantomjs ,当然诸如selenium之类的也可以考虑。

3、如果爬虫是涉及大规模网站爬取,效率、扩展性、可维护性等是必须考虑的因素时候
大规模爬虫爬取涉及诸多问题:多线程并发、I/O机制、分布式爬取、消息通讯、判重机制、任务调度等等,此时候语言和所用框架的选取就具有极大意义了。
PHP对多线程、异步支持较差,不建议采用。
NodeJS:对一些垂直网站爬取倒可以,但由于分布式爬取、消息通讯等支持较弱,根据自己情况判断。
Python:强烈建议,对以上问题都有较好支持。尤其是Scrapy框架值得作为第一选择。优点诸多:支持xpath;基于twisted,性能不错;有较好的调试工具;
此种情况下,如果还需要做js动态内容的解析,casperjs就不适合了,只有基于诸如chrome V8引擎之类自己做js引擎。
至于C、C++虽然性能不错,但不推荐,尤其是考虑到成本等诸多因素;对于大部分公司还是建议基于一些开源的框架来做,不要自己发明轮子,做一个简单的爬虫容易,但要做一个完备的爬虫挺难的。

像我搭建的微信公众号内容聚合的网站 就是基于Scrapy做的,当然还涉及消息队列等。可以参考下图:

具体内容可以参考 一个任务调度分发服务的架构

⑽ node.js可以和python交互吗

把 Electron 当做纯浏览器用,Python 端可以用 web.py 或者 flask 等做一个服务器,使用 Ajax 在前端 JS 和 后端 Python 之间通信。

Electron 的 Renderer 端默认情况下融合了 NodeJS 环境,也就是可以直接在页面里面使用 net 模块创建 Socket,相比之下 2 应该是最优解。