python图片上的代码是什么意思

-1 and 1是求真值,非零代表真,0代表假,结果是1,
d/100 %9 = 241/100 % 9 = 2.41 %9,这是求余数,答案是2。

② 怎么用python显示一张图片

在 python 中除了用 opencv,也可以用 matplotlib 和 PIL 这两个库操作图片。本人偏爱 matpoltlib,因为它的语法更像 matlab。
一、matplotlib
1. 显示图片
复制代码
import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
lena = mpimg.imread('lena.png') # 读取和代码处于同一目录下的 lena.png
# 此时 lena 就已经是一个 np.array 了,可以对它进行任意处理
lena.shape #(512, 512, 3)
plt.imshow(lena) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
复制代码
2. 显示某个通道
复制代码
# 显示图片的第一个通道
lena_1 = lena[:,:,0]
plt.imshow('lena_1')
plt.show()
# 此时会发现显示的是热量图,不是我们预想的灰度图,可以添加 cmap 参数,有如下几种添加方法:
plt.imshow('lena_1', cmap='Greys_r')
plt.show()
img = plt.imshow('lena_1')
img.set_cmap('gray') # 'hot' 是热量图
plt.show()
复制代码
3. 将 RGB 转为灰度图
matplotlib 中没有合适的函数可以将 RGB 图转换为灰度图,可以根据公式自定义一个:
复制代码
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])
gray = rgb2gray(lena)
# 也可以用 plt.imshow(gray, cmap = plt.get_cmap('gray'))
plt.imshow(gray, cmap='Greys_r')
plt.axis('off')
plt.show()
复制代码
4. 对图像进行放缩
这里要用到 scipy
复制代码
from scipy import misc
lena_new_sz = misc.imresize(lena, 0.5) # 第二个参数如果是整数,则为百分比,如果是tuple,则为输出图像的尺寸
plt.imshow(lena_new_sz)
plt.axis('off')
plt.show()
复制代码
5. 保存图像
5.1 保存 matplotlib 画出的图像
该方法适用于保存任何 matplotlib 画出的图像,相当于一个 screencapture。
plt.imshow(lena_new_sz)
plt.axis('off')
plt.savefig('lena_new_sz.png')
5.2 将 array 保存为图像
from scipy import misc
misc.imsave('lena_new_sz.png', lena_new_sz)
5.3 直接保存 array
读取之后还是可以按照前面显示数组的方法对图像进行显示,这种方法完全不会对图像质量造成损失
np.save('lena_new_sz', lena_new_sz) # 会在保存的名字后面自动加上.npy
img = np.load('lena_new_sz.npy') # 读取前面保存的数组
二、PIL
1. 显示图片
from PIL import Image
im = Image.open('lena.png')
im.show()
2. 将 PIL Image 图片转换为 numpy 数组
im_array = np.array(im)
# 也可以用 np.asarray(im) 区别是 np.array() 是深拷贝,np.asarray() 是浅拷贝
3. 保存 PIL 图片
直接调用 Image 类的 save 方法
from PIL import Image
I = Image.open('lena.png')
I.save('new_lena.png')
4. 将 numpy 数组转换为 PIL 图片
这里采用 matplotlib.image 读入图片数组,注意这里读入的数组是 float32 型的,范围是 0-1,而 PIL.Image 数据是 uinit8 型的,范围是0-255,所以要进行转换:
import matplotlib.image as mpimg
from PIL import Image
lena = mpimg.imread('lena.png') # 这里读入的数据是 float32 型的,范围是0-1
im = Image.fromarray(np.uinit8(lena*255))
im.show()
5. RGB 转换为灰度图
from PIL import Image
I = Image.open('lena.png')
I.show()
L = I.convert('L')
L.show()

③ Python如何重叠图片

from PIL import Image
import math
import os
os.chdir('图片地址路径')
img_A = Image.open('A图片') #读取图片A
for i in [图片名]:
img_temp = Image.open(i') #依次读取其它图片
final_img = Image.blend(img_A, img_temp, 0.5)
final_img.save('路径\新的图片名')

④ python用graphics中的image图片保存与调用

from PIL import Image
import os.path
import glob
def convertjpg(jpgfile,outdir,width=1280,height=720):
img=Image.open(jpgfile)
new_img=img.resize((width,height),Image.BILINEAR)
new_img.save(os.path.join(outdir,os.path.basename(jpgfile)))
for jpgfile in glob.glob("D:/python/*.jpg"):
convertjpg(jpgfile,"D:/newfile")

convertjpg调用时可以有四个参数,如convertjpg(jpgfile,"D:/newfile",800,600)
Image open了jpg用完后要不要close?

⑤ python图片解析是否有

from PIL import Image ### 此处为导出包,注意字母大小写import os, os.path # 指明被遍历的文件夹rootdir =os.path.abspath(os.curdir)+'/Image/'rootdir1=os.path.abspath(os.pardir)+"/Image/" #打包用if os.path.isdir(rootdir): passelse: rootdir=rootdir1 size = 315, 560i=0 for parent,dirnames,filenames in os.walk(rootdir): for filename in filenames: infile=os.path.join(parent,filename) im = Image.open(infile) ### 此处Image.open(dir)为多数对象应用的基础. im.thumbnail(size) ### 此处size 为长度为2的tuple类型,改变图片分辨率 im.save(infile) ### im.save(dir),图片处理的最后都用这个,就是保存处理过后的图片 i+=1 print(i,"Done")

⑥ 如何使用python来判断图片相似度

from PIL import Imageimport os#import hashlib def getGray(image_file): tmpls=[] for h in range(0, image_file.size[1]):#h for w in range(0, image_file.size[0]):#w tmpls.append( image_file.getpixel((w,h)) ) return tmpls def getAvg(ls):#获取平均灰度值 return sum(ls)/len(ls) def getMH(a,b):#比较100个字符有几个字符相同 dist = 0; for i in range(0,len(a)): if a[i]==b[i]: dist=dist+1 return dist def getImgHash(fne): image_file = Image.open(fne) # 打开 image_file=image_file.resize((12, 12))#重置图片大小我12px X 12px image_file=image_file.convert("L")#转256灰度图 Grayls=getGray(image_file)#灰度集合 avg=getAvg(Grayls)#灰度平均值 bitls=''#接收获取0或1 #除去变宽1px遍历像素 for h in range(1, image_file.size[1]-1):#h for w in range(1, image_file.size[0]-1):#w if image_file.getpixel((w,h))>=avg:#像素的值比较平均值 大于记为1 小于记为0 bitls=bitls+'1' else: bitls=bitls+'0' return bitls''' m2 = hashlib.md5() m2.update(bitls) print m2.hexdigest(),bitls return m2.hexdigest()''' a=getImgHash("./Test/测试图片.jpg")#图片地址自行替换files = os.listdir("./Test")#图片文件夹地址自行替换for file in files: b=getImgHash("./Test/"+str(file)) compare=getMH(a,b) print file,u'相似度',str(compare)+'%'

⑦ 怎样利用Python进行图片分析

fromPILimportImage###此处为导出包,注意字母大小写
importos,os.path

#指明被遍历的文件夹
rootdir=os.path.abspath(os.curdir)+'/Image/'
rootdir1=os.path.abspath(os.pardir)+"/Image/"

#打包用
ifos.path.isdir(rootdir):
pass
else:
rootdir=rootdir1

size=315,560
i=0

forparent,dirnames,filenamesinos.walk(rootdir):
forfilenameinfilenames:
infile=os.path.join(parent,filename)
im=Image.open(infile)###此处Image.open(dir)为多数对象应用的基础.
im.thumbnail(size)###此处size为长度为2的tuple类型,改变图片分辨率
im.save(infile)###im.save(dir),图片处理的最后都用这个,就是保存处理过后的图片
i+=1
print(i,"Done")

要用pil包 安装如下:pipinstallpillow

⑧ 怎么用python显示一张图片

用python显示一张图片方法如下:

import matplotlib.pyplot as plt # plt 用于显示图片

import matplotlib.image as mpimg # mpimg 用于读取图片

import numpy as nplena = mpimg.imread('lena.png') # 读取和代码处于同一目录下的 lena.png# 此时 lena 就已经是一个 np.array 了,可以对它进行任意处理

lena.shape #(512, 512, 3)plt.imshow(lena) # 显示图片plt.axis('off') # 不显示坐标轴

plt.show()

⑨ python如何进行图像比对

importImage
importImageChops

im1=Image.open('1.jpg')
im2=Image.open('2.jpg')

diff=ImageChops.difference(im1,im2).getbbox()
printa+b+'is:'+str(diff)